
www.vsb.cz

Programming Languages and Compilers
behalek.cs.vsb.cz/wiki/index.php/Programming_Languages_and_Compilers

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

March 2, 2022

1 Introduction to the area of programming
languages and compilers

2 History of programming languages
First programming languages
Notable Programming languages

3 Classification of Programming Languages
4 Specification of programming languages
5 Compilers

Basic properties
Types of compiles
Transformation of Source Codes
Compiler’s inner structure

6 Formal languages
7 Chomsky Hierarchy
8 Lexical analysis
9 Syntactic analysis

LL(1) Grammars
10 Implementing Parser for LL(1) Grammars

Recursive Descent
Non-recursive Predicative Analysis for
LL(1)
Compiler-Compilers

11 LR Grammars
12 Error Handling

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 1 / 95

Introduction to the area of programming languages and compilers

Motivation

Get a better insight into programming languages. We will talk about the classification of
programming languages.
Understand a structure of a compiler and basic compiler’s types.
We will learn how to build a parser based on LL(1) grammars.
We will learn how to use compiler compilers, namely ANTLR.
We will talk (briefly) about other aspects like optimizations and run-time environment.
Building a real programming language compiler is rare, but task like extracting data from
source codes, parsing some protocols or converting data formats are pretty common →
the same techniques can be used → much simpler then most ad-hoc solutions

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 2 / 95

Introduction to the area of programming languages and compilers

What is a programming language?

Plenty of informal definitions.
A programming language is a machine-readable artificial language designed to express
computations that can be performed by a machine, particularly a computer.
Programming languages can be used to create programs that specify the behavior of a
machine, to express algorithms precisely, or as a mode of human communication.

Frequently, the term programming language is restricted to those languages that can
express all possible algorithms.

Turing complete languages
SQL or HTML are languages (artificial, machine-readable, expressing computation, ...), that
are usually not considered programming languages.

If we want to use (especially high-level) programming languages we need a compiler.
A product of this compiler is a computer program - a collection of instructions that perform
a specific task when executed by a computer.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 3 / 95

History of programming languages / First programming languages

First programming languages

Theoretical beginnings (early 20th century)
Alonzo Church - lambda calculus – theory of computations
Alan Turing – show that a machine can solve a “problem”.
John von Neumann – defined computer’s architecture (relevant even for today’s computers).

First programming languages (Wikipedia)
Plankalkül - 1942 - 1945, Konrad Zuse, used for mechanical computer Z1.
Short Code - early 1950s, John Mauchly, first functioning programming languages designed
to communicate instructions to an electronic computer.
FORTRAN - 1954 - 1957, IBM, John Backus, first high-level general purpose programming
language to have a working implementation.

Even now, along with C/C++, most frequently used programming language for
high-performance computing.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 4 / 95

History of programming languages / First programming languages

First programming language - FORTRAN

FORTRAN compiler - biggest programming project of that times.
More practical alternative to assembly language (still we are talking about punched cards
era).

Even assembly language evolved, now is much more higher level and user friendly.
Many versions:

FORTRAN II (1958, procedural programming), III (1958), IV (1961, booleans)
FORTRAN 66, FORTRAN 77 (structured programming)
Fortran 90 (Major revision, close to C), Fortran 95 (included High Performance Fortran)
Modern fortran: Fortran 2003 (OOP,streams, ...), Fortran 2008, Fortran 2018

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 5 / 95

History of programming languages / First programming languages

First programming language - FORTRAN II - One card input

C AREA OF A TRIANGLE - HERON'S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT
C OUTPUT -
C INTEGER VARIABLES START WITH I,J,K,L,M OR N

READ(5,501) IA,IB,IC
501 FORMAT(3I5)

IF (IA) 701, 777, 701
701 IF (IB) 702, 777, 702
702 IF (IC) 703, 777, 703
777 STOP 1
703 S = (IA + IB + IC) / 2.0

AREA = SQRT(S * (S - IA) * (S - IB) * (S - IC))
WRITE(6,801) IA,IB,IC,AREA

801 FORMAT(4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2, $13H SQUARE UNITS)
STOP
END

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 6 / 95

History of programming languages / First programming languages

First programming languages - Fortran 77

* Prints the values of e ** (j * i * pi / 4) for i = 0, 1, 2, ..., 7
* where j is the imaginary number sqrt(-1)

PROGRAM CMPLXD
IMPLICIT COMPLEX(X)
PARAMETER (PI = 3.141592653589793, XJ = (0, 1))
DO 1, I = 0, 7

X = EXP(XJ * I * PI / 4)
IF (AIMAG(X).LT.0) THEN

PRINT 2, 'e**(j*', I, '*pi/4) = ', REAL(X), ' - j',-AIMAG(X)
ELSE

PRINT 2, 'e**(j*', I, '*pi/4) = ', REAL(X), ' + j', AIMAG(X)
END IF

2 FORMAT (A, I1, A, F10.7, A, F9.7)
1 CONTINUE

STOP
END

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 7 / 95

History of programming languages / First programming languages

First programming languages - Modern fortran (Fortran 90 +)

program area
implicit none
real :: A, B, C, S

! area of a triangle
read *, A, B, C
S = (A + B + C)/2
A = sqrt(S*(S-A)*(S-B)*(S-C))
print *,"area =",A
stop

end program area

program factorial
integer :: i, num
integer (kind=16) :: fact

write (*,*) "n! ? "
read(*,*) num

fact = 1
do i = 2, num

fact = fact * i
write(*,'(I3,"! = ", I20)') i, fact

end do
end program factorial

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 8 / 95

History of programming languages / Notable Programming languages

Historical Influencers

LISP - (second oldest) 1958, John McCarthy (MIT)
Originally mathematical notation for computer programs.
Functional programming style.
Pioneered many (now widely used) ideas (tree data structures, high order functions,
recursion, dynamic typing,...).
Many dialects: Common Lisp, Scheme, Clojure

(defun factorial (n)
(if (zerop n) 1

(* n (factorial (1- n)))))

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 9 / 95

History of programming languages / Notable Programming languages

Historical Influencers II

Algol - 1958-1960, Bauer, Bottenbruch, Rutishauser, Samelson, Backus, Katz, Perlis,
Wegstein, Naur, Vauquois, van Wijngaarden, Woodger, Green, McCarthy

Notable versions: Algol 60, Algol 68
Heavily influenced many other programming languages (especially syntax) - C/C++,
Pascal, Simula, Smaltalk, Ada, ...
ACM - standard method for algorithm description in academia text books for decades.
Algol 68 had garbage collection.

COBOL (common business-oriented language) - 1959, CODYSAL
It is an imperative, procedural and, since 2002, object-oriented language.
Primarily used in business, finance, and administrative systems.
Most programming in COBOL is now purely to maintain existing applications.
English-like syntax.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 10 / 95

History of programming languages / Notable Programming languages

Historical Influencers II - Algol 60

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a, of size n by m,
is transferred to y, and the subscripts of this element to i and k;

begin
integer p, q;
y := 0; i := k := 1;
for p := 1 step 1 until n do

for q := 1 step 1 until m do
if abs(a[p, q]) > y then

begin y := abs(a[p, q]);
i := p; k := q

end
end Absmax

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 11 / 95

History of programming languages / Notable Programming languages

Historical Influencers II - COBOL

CO MPUTE-GROSS-PAY.
IF HOURS-WORKED > 40 THEN

MULTIPLY PAY-RATE BY 1.5 GIVING OVERTIME-RATE
MOVE 40 TO REGULAR-HOURS
SUBTRACT 40 FROM HOURS-WORKED GIVING OVERTIME-HOURS
MULTIPLY REGULAR-HOURS BY PAY-RATE GIVING REGULAR-PAY
MULTIPLY OVERTIME-HOURS BY OVERTIME-RATE

GIVING OVERTIME-PAY
ADD REGULAR-PAY TO OVERTIME-PAY GIVING GROSS-PAY

ELSE
MULTIPLY HOURS-WORKED BY PAY-RATE GIVING GROSS-PAY

END-IF
.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 12 / 95

History of programming languages / Notable Programming languages

Some popular languages

Structured programming languages
Pascal - 1968-71, Niklaus Wirth, ETH
Zurich
C - 1972, Dennis Ritchie, Bell Labs

Object Oriented Languages
Simula 67 - 1960s, Ole-Johan Dahl,
Kristen Nygaard
Smalltalk - first version 1972, Alan
Kay, Xerox, public version 1980
(Smalltalk-80),
C++ - 1982-85, Bjarne Stroustrup,
AT&T Bell Labs

Statically typed functional programming
ML - 1973, Robin Milner, University of
Edinburgh

Logic programming
Prolog - 1972, Alain Colmerauer,
Robert Kowalski

Popular programming languages
Visual basic - 1991, Microsoft
Python - 1991, Guido van Rossum
Javascript - 1995, Brendan Eich,
Netscape
PHP - 1995, Rasmus Lerdorf
Java - 1995, James Gosling
C# - 2000, Anders Hejlsberg, Mads
Torgersen, Microsoft
Matlab, R, Ruby, Objective-C, Rust,
Ada, Scala, Haskell, Lua, Rust, Go,
Erlang,...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 13 / 95

History of programming languages / Notable Programming languages

Programming languages and computer’s architecture

Programming languages are limited and affected by an architecture of computers.
Effective implementation must exists, if we want to use them to create real life applications.
Still true, but smaller problem then computer’s stone age (1960s-1970s).
When computer’s architecture is changing, the programming languages are also affected.

Von Neumann’s architecture (Princeton architecture) → very old (1945), but still
(somehow) valid.

Architecture x86 started with Intel 8086 in 1978.

Plenty of languages have the same basic constructs (Java, C++, C#, Python,...) like
loops and conditions → these can be easily converted to current CPUs machine code.
The approach: from architecture to programming language was criticized even in these
stone ages.

Backus J. Can programming be liberated from the von Neumann style?: a functional style
and its algebra of programs, Communications of the ACMVolume 21Issue 8Aug. 1978 pp
613–641https://doi.org/10.1145/359576.359579 (Turing Award)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 14 / 95

Classification of Programming Languages

Classification of Programming Languages I

How can we divide programming languages into categories? What are the most notable
features? What should I list when describing programming language?
A level of programming language (sometimes the term generation is used)

Low-level programming languages
Machine Code (1st generation)
Assembly language (2nd generation)

High-level programming languages (3nd generation)
Majority of today’s programming languages: C/C++, Java, Python,...
Requires a compiler to work.
Instead of basic elements like registers or instructions we use more complex ones like object or
loops.

4thgeneration languages tend to be specialized toward very specific programming domains
(database, GUI, Web).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 15 / 95

Classification of Programming Languages

Classification of Programming Languages II

5thgeneration languages are based on problem-solving using constraints given to the
program, rather than using an algorithm written by a programmer (constraint or logic
programming).

Programming paradigm - classify programming languages based on their features or a
style (sometimes loosely defined).
Notable features for their implementation.

Type system, Compiler design, Execution strategies, ...

Programming domain (domain specific programming languages) - scripting, expert
systems, artificial intelligence, natural language processing, numerical mathematics
(statistics), ...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 16 / 95

Classification of Programming Languages

Machine Code

Lowest level of programming.
Consisting of machine language instructions, which are used to control CPU.
Each instruction causes the CPU to perform a very specific task, such as a load, a store,
a jump, or an arithmetic logic unit (ALU) operation on one or more units of data in the
CPU’s registers or memory.
[op | rs | rt | address/immediate]

35 3 8 68 decimal
100011 00011 01000 00000 00001 000100 binary

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 17 / 95

Classification of Programming Languages

Assembly languages

The same level of programming as
machine code, instruction are in more
human readable form.
Still, they can be transformed to
machine code using some sort of macros.
Typically, one machine instruction is
represented as one line of assembly code.

Some high level languages (for example
C) allows to use directly Assembly
language code fragments.

_fib:
movl $1, %eax
xorl %ebx, %ebx

.fib_loop:
cmpl $1, %edi
jbe .fib_done
movl %eax, %ecx
addl %ebx, %eax
movl %ecx, %ebx
subl $1, %edi
jmp .fib_loop

.fib_done:
ret

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 18 / 95

Classification of Programming Languages

Logic programming

Largely based on formal logic.
The idea behind: Algorithm = Logic + Control (different theorem-proving strategies)
A program is then a set of sentences in logical form, expressing facts and rules about
some problem domain.
One of the most known logic programming language is Prolog

Often used in the area of artificial intelligence and computational linguistics.
edge(a, b). edge(a, c). edge(b, d). edge(c, d). edge(d, e). edge(f, g).

connected(N, N).
connected(N1, N2) :- edge(N1, L), connected(L, N2).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 19 / 95

Classification of Programming Languages

Programming paradigms I

Programming paradigms defines a sort of style of programming.
Sometimes, it defines what is not allowed in particular style of programming (side effects in
functional programming).
Programming paradigms are a way to classify programming languages based on their
features.

One language can implement more than one programming paradigms.
Frequently, they implement just some selected parts of programming paradigms, pure
languages are rarer.
Some programming paradigms works well together or complements each other
(structured and imperative programming), some are conflicting with each other
(declarative and imperative programming).
Most of modern programming languages are multi-paradigm languages (they implement
several programming paradigms).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 20 / 95

Classification of Programming Languages

Programming paradigms II

Popular programming paradigms
Imperative vs. Declarative (functional, logic) programming
Object oriented programming (class based, prototype based)

But there are many more...
Visual programming, Event driven programming, Flow driven programming, Constraint
programming, Aspect oriented programming, ...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 21 / 95

Classification of Programming Languages

Type system I

Type checking - the process of verifying and enforcing the constraints of types.
Static typing (C, C++, Java, Haskell...)

Type checking is performed (mostly) during compile-time.
Static typing is a limited form of program verification.
It allows many errors to be caught early in the development cycle.
Static type checkers are conservative - they will reject some programs that may be
well-behaved at run-time, but that cannot be statically determined to be well-typed.

Dynamic typing (Javascript, Python, PHP...)
Majority of its type checking is performed at run-time.
Dynamic typing can be more flexible than static typing. For example by allowing programs to
generate types based on run-time data.
Run-time checks can potentially be more sophisticated, since they can use dynamic
information as well as any information that was present during compilation.
var x := 5; // (1) (x is an integer)
var y := "37"; // (2) (y is a string)
var z := x + y; // (3) (? - Visual Basic = 42, Javascript "537")

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 22 / 95

Classification of Programming Languages

Type system II

Strongly typed languages - do not allow undefined operations to occur.
Weak typing means that a language implicitly converts (or casts) types when used.
Type safe - is language if it does not allow operations or conversions which lead to
erroneous conditions.
Memory safe - for example it will check array bounds (resulting to compile-time and
perhaps run-time errors).
int x = 5;
char y[] = "37";
char* z = x + y; //z points five characters after y
Polymorphism

The ability of code (in particular functions, methods or classes) to act on values of multiple
types, or the ability of different instances of the same data-structure to contain elements of
different types.
Type systems that allow polymorphism generally do so in order to improve the potential for
code re-use.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 23 / 95

Classification of Programming Languages

Type system III

Animal obj = new Horse();
obj.sound();
length :: [a] -> Int -- a is a type variable
length [] = 0
length (x:xs) = 1 + length xs

Type interference
Strongly statically typed languages
Automatic deduction of the data types
Hindley-Milner type system

Other type systems categories
Manifest vs. Inferred
Nominal (C#, Java, - type are compared based on its definition trough name) vs.
Structural (OCalm - types are compared based on their structure)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 24 / 95

Specification of programming languages

What we want to describe? I

How a correct program looks like? → Syntax
Programming language syntax is generally distinguished into three levels:

Words – the lexical level, determining how characters form tokens;
Phrases – the grammar level, narrowly speaking, determining how tokens form phrases;
Context – determining what objects or variables names refer to, if types are valid, etc.

How to do that? → Formal languages, grammars, automatons,...
Backus–Naur form

It is a meta-syntax notation for context-free grammars.
Often used to define a syntax for programming languages.
There are some extensions. For example Extended BNF allows to use regular expressions *
operator.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 25 / 95

Specification of programming languages

What we want to describe? II

<expression> ::= <expression> + <term>
| <expression> - <term>
| <term>

<term> ::= <term> * <factor>
| <term> / <factor>
| <factor>

<factor> ::= <element> ^ <factor>
| <element>

<element> ::= (<expression>)
| <variable>
| <number>

What a correct program should do? → Senamtics
Semantics reflects the meaning of programs. It is defined by some sort of model.
Many different frameworks, none of them considered to be a standard.
Much harder (than syntax definition) for most languages → no formal definition for most
languages.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 26 / 95

Specification of programming languages

What we want to describe? III

Easier for languages that are closer to math, like functional languages. Usually it is formally
defined for a core, other language constructs are then transformed into this core elements.
Main approaches belong to three major classes:

Axiomatic semantics - meaning of phrases is described by axioms that apply to them.
Example: Hoare logic.
Operational semantics - the execution of the language is described directly, this may be
defined using an abstract machine (transitions on its state) or via syntactic transformations
on phrases of the language itself.
< b, σ >⇓ true < c0, σ >⇓ σ ′

< if b then c0 else c1, σ >⇓ σ ′
< b, σ >⇓ false < c1, σ >⇓ σ ′

< if b then c0 else c1, σ >⇓ σ ′

Denotation semantics - meanings are modeled by mathematical objects that represent the
effect of executing this construct. Thus only the effect is of interest, not how it is obtained.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 27 / 95

Specification of programming languages

What we want to describe? IV

data Com = If Exp Com Com -- if(e) c else c
| While Exp Com -- while(e) c
| Seq Com Com -- c ; c

data State = State {store::Store, input::[Int], output::[Int]}

p :: Prog -> Input -> Output
p body inp = out

where State{output=out} = c body (initialState inp)

c :: Com -> State -> State
c (If b c1 c2) s = let (v1,s') = e b s

in if v1 == 0 then c c2 s'
else c c1 s'

c (While b c1) s = let (v1,s') = e b s
in if v1 == 0 then s'
else c (While b c1) (c c1 s')

c (Seq c1 c2) s = c c2 (c c1 s)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 28 / 95

Compilers / Basic properties

What is a compiler?

We all agree, some kind of a compiler is necessary, when we want to use a high level
language.
Compiler’s primary function is to translate a source language to a target
language.

Most often, the source language is a high-level programming language readable by humans
and the target is then a low-level language understandable by a computer.
Still there are other types of compilers that for example: extracts some data from source
codes (Doxygen), generates documents from source codes (Latex), works with data
(XSLT), ...
Possible are also source to source compilers, that transform one program to another
(OpenMP).

Are there some secondary requirements?
Handle errors - How and when to report errors?
Optimizations - Most often, it is not enough to produce just some working result.
Supporting activities like debugging, profiling,..

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 29 / 95

Compilers / Basic properties

Most common scenario for source and target languages

Source language
Most often programming languages (C, Java, Haskell,...).
Special (domain oriented) languages (Latex, VHDL, PostScript,...).

Target language
Machine code
Object code - most often machine code modules that requires a linker to produce an
executable or library file.
Bytecode, intermediate language, p-code (portable code) - assembly code or machine code
for a virtual machine.
Less frequent can be generating assembly code, or some high level language (C for embeded
systems).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 30 / 95

Compilers / Types of compiles

Types of Compiles I - Traditional Compiler vs. Interpreter

Compiled vs. Interpreted languages -
usually not strictly given, sometime one
type is better suited.
Compiler advantages:

Faster, usually better optimizations
It is not require in a run-time.
Best suited for applications like HPC.

Interpreter advantages:
Less platform dependent
Better suited for run-time
modifications.
Best suited for scripting or web
languages.
Often simpler - better for education.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 31 / 95

Compilers / Types of compiles

Types of Compiles II

Native code compiler vs. Cross Compile (a program that translates into an object code
format that is not supported on the compilation machine. Suited for embedded
applications).
Ahead-Of-Time (AOT) compiler - program is compiler to machine code before its
execution (usually emphasize some kind of advantages from the act, while a traditional
compiler works technically like this).
Just-In-Time (JIT) compiler = AOT compilation + interpretation

JIT compiler performs compilation to machine code during execution of a program.
Tries to combine main advantages of a compiler and an interpreter (also combines some
disadvantages of both approaches).
Frequently used now-days.

Decompiler, Disassembler - translates an executable codes to high-level source codes.
Parallelizing Compiler, Bootstrap Compilers, Incremental Compiler, Source-To-...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 32 / 95

Compilers / Transformation of Source Codes

Transformation of Source Codes I

Source code - input is a text at this stage.
position := startPoint + speed * 60;
Lexical analysis - result is a sequence of tokens (lexical symbols).
<ID,position> <:=,> <ID,startPoint> <+,> <ID,speed> <*,> <INT,60>
Syntactic analysis, parsing - defines a hierarchy (corresponding parenthesis are matched),
the result us usually Abstract Syntax Tree (AST).

Assignment

Expression

Expression

Expression

<INT,60>

<*,>Expression

<ID,speed>

<+,>Expression

<ID,startPoint>

<:=,><ID,position>

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 33 / 95

Compilers / Transformation of Source Codes

Transformation of Source Codes II

Semantic (context sensitive) analysis
Solves issues that are hard (impossible) to capture by context free languages.
Adds semantic information to the parse tree.
It usually includes type checking (checking for type errors), or object binding (associating
variable and function references with their definitions), or definite assignment (requiring all
local variables to be initialized before use).

:=

+

∗

intToReal

60

speed

startPoint

position

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 34 / 95

Compilers / Transformation of Source Codes

Transformation of Source Codes III

Transformation to some kind of intermediate representation.
Different types of representation, the choice is strongly dependent on operations we want to
perform.

temp1 := inttoreal(60)
temp2 := speed * temp1
temp3 := startPoint + temp2
position := temp3
Optimization
temp1 := speed * 60.0
position := startPoint + temp1
Target code generation
fld qword ptr [_speed]
fmul dword ptr [00B2] ;60.0
fadd qword ptr [_startPoint]
fstp qword ptr [_position]

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 35 / 95

Compilers / Compiler’s inner structure

Compiler’s inner structure I

Compiler’s inner structure can be described from different perspectives.
1 We can decompose the compilation into logical phases.

They roughly follows how the language models are transformed during the compilation
process.
Then, the structure of a compiler can be described as units (corresponding to these logical
phases) collaborating (along with supporting units like a symbol table) to achieve desired
result.
These logical phases can be divided into two (three) stages: front end, (middle end,) back
end.
Front-end (analysis)

Preprocessing, lexical analysis, syntactic analysis (parsing), semantic analysis (syntax-directed
translation),
The result of this stage is some kind of intermediate representation (usually lower level, more
suitable for further stages).

Middle-end (optimizations)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 36 / 95

Compilers / Compiler’s inner structure

Compiler’s inner structure II

Particular operations usually compose from two steps: analysis (data-flow analysis,
dependence analysis, alias analysis, pointer analysis, escape analysis,...) and the optimization
itself (inline expansion, dead code elimination, constant propagation, loop transformation,
automatic parallelization,...).
These optimizations are often machine and even source code independent.
Optimizations modifies used intermediate representation, or generate a new, more appropriate
one.

Back-end (synthesis)
Target code is generated, this stage is target hardware architecture dependent.
Machine code optimizations, code generation, target code optimizations.

2 We can classify compilers by number of passes they do.
One pass can be roughly described as a process, when the compiler goes trough source
codes (or their representation).
Funny history of multi-pass compilers

1 First compilers were multi-pass compilers, due to hardware limitations.
2 One-pass compilers were harder to implement, but were better mainly due to being faster.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 37 / 95

Compilers / Compiler’s inner structure

Compiler’s inner structure III

3 Languages were designed to allow one-pass compilation (C,Pascal).
4 Hardware limitations are long gone, multi-pass compilers are able to perform better

optimizations, thus producing better quality target code.
5 Modern programming languages (like Java) have simpler design, but require multi-pass

compilers.
6 Most modern compilers are multi-pass again...

One-pass compiler - all logical phases are performed in one pass.
Limited optimizations, but faster → useful in some areas like scripting languages or
development tools.
Simpler to handle errors → useful for education.

Muti-pass compiler (optimizing compiler)
Specific optimizations are usually performed in one pass, levels of optimizations can be
defined by a programmer.
Is able to produce better target code, but are more complex.

Compilers re-usability

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 38 / 95

Compilers / Compiler’s inner structure

Compiler’s inner structure IV

Because of these distinct logical phases and stages, real compiler’s design usually
compose from modules, with clear purpose → we do not need to start from scratch →
we can reuse existing solution.

One of real open source project, providing robust compilers infrastructure (that can be
extended in many ways) is: LLVM https://llvm.org/

Sometimes, real compilers uses separated tool like: pre-processor, assembler or linker.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 39 / 95

https://llvm.org/

Compilers / Compiler’s inner structure

Creating a compiler

Historical compilers (for example for FORTRAN) were biggest software project of that time.
Now-days, similar project is much simpler. Key question is why?

There are no hardware obstacles as before. Software engineering is much more advanced.
We can reuse other compilers.
There are plenty of special supportive tools. Most notably compiler compilers and
compiler infrastructure projects like LLVN.
Especially the analysis part is well established - backed by theory, mainly formal
languages.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 40 / 95

Formal languages

Formal languages - simplified

Alphabet - finite set of symbols Σ

Example: {0,1}, {a, b, c, ... z}, {a,b,+, -,(,)}
Words over an alphabet Σ - denoted by Σ∗

Set of symbols from Σ + Empty word ε
Example: 1001, pjp, a-(b+b)

Language over an alphabet Σ
A subset of words (Σ∗) over an alphabet (Σ)
Finite or infinite languages
Example:

{0, 00, 11, 000, 011, 101, 110, 0000, 0011, ...}
{int, double, char}
{a, b, a+a, a+b, b+a, b+b, ... a-(b+b), ..}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 41 / 95

Formal languages

How we can describe a language?

List of elements - applicable only to finite languages (most programming languages are
not...)
Description in spoken language

Vague, hard to really process by a computer.
Sometimes all we can get...

Formal generative systems - grammars
Grammars compose from a set of rules, based on them, we are ultimately able to generate
all language’s words.
Often easily readable and understandable by a programmer.

Formal detection systems - automatons
Automaton define a system, that when executed with some input word provides an answer
(or computes indefinitely) to question: If the word belong to recognized language.
Often, easy to simulate the detection on a computer (frequently with a good run-time
performance).

What we will do in several next lectures will be to chose a proper generative systems to
describe the source language and then convert them to appropriate detection systems.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 42 / 95

Chomsky Hierarchy

Generative Grammars

Definition

A generative grammar is a tuple G = (Π,Σ, S, P), where
Π is a finite set of nonterminals
Σ is a finite set of terminals, Π ∩ Σ = ∅
S ∈ Π is the initial nonterminal
P is a finite set of rules of the form α → β, where α ∈ (Π ∪ Σ)∗Π(Π ∪ Σ)∗ and
β ∈ (Π ∪ Σ)∗.

Example of a rule:

CaECb → bDFbBDaC

Remark: This type of grammar is also called type-0 grammars, unrestricted grammars, or
phrase structure grammars.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 43 / 95

Chomsky Hierarchy

Generative Grammars

Let us assume that we have a generative grammar G = (Π,Σ, S, P).
Relation ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗:

µ1αµ2 ⇒ µ1βµ2 if α → β is a rule from P

Example: If (BcE → DDaBb) ∈ P then

CaBCBcEAccABb ⇒ CaBCDDaBbAccABb

A language L(G) generated by a grammar G = (Π,Σ, S, P) is the set of all words over
alphabet Σ that can be derived by some derivation from the initial nonterminal S using rules
from P, i.e.,

L(G) = {w ∈ Σ∗ | S⇒∗ w}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 44 / 95

Chomsky Hierarchy

Context-sensitive Grammars

Context-sensitive grammars, also called type-1 grammars, are a special case of
generativních grammars.
A grammar G = (Π,Σ, S, P) is called context-sensitive if all its rules (with one exception
given below) are of the form

αXβ → αγβ

where X ∈ Π, α,β, γ ∈ (Π ∪ Σ)∗, with |γ| ≥ 1.
The only exception is that the grammar can contain the rule S → ε.
If G contains this rule then the initial nonterminal S can not occur on the right-hand side of
any rule.
An example of a rule:

BaEC → BaDAcBC

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 45 / 95

Chomsky Hierarchy

Context-free Grammars

Another special type of generative grammars are context-free grammars.
Context-free grammars are also called type-2 grammars.
A grammar G = (Π,Σ, S, P) is context-free if all its rules are of the form

X → γ

where X ∈ Π, γ ∈ (Π ∪ Σ)∗.
A example of a rule:

C → DaBBc

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 46 / 95

Chomsky Hierarchy

Regular grammars

Definition

A grammar G = (Π,Σ, S, P) is right regular if all rules in P are of the following forms (where
A,B ∈ Π, a ∈ Σ): A→ B, A→ aB, A→ ε

Definition

A grammar G = (Π,Σ, S, P) is left regular if all rules in P are of the following forms (where
A,B ∈ Π, a ∈ Σ): A→ B, A→ Ba, A→ ε

Definition

A grammar G is regular if it right regular or left regular.

Regular grammars are also called type-3 grammars.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 47 / 95

Chomsky Hierarchy

Chomsky Hierarchy

So according to the types of rules that can be used in a grammar, the grammars can be
divided into these four types:

Type-0 — General generative grammars
no restrictions on the rules
Type-1 — Context-sensitive grammars
rules of the form αXβ→ αγβ, where |γ| ≥ 1

(An exception is possible rule S→ ε, but then S does not occur on the right-hand side of
any rule.)
Type-2 — context-free grammars
rules of the form X→ γ

Type-3 — regular grammars
rules of the form X→ wY (resp. X→ Yw) or X→ w

where α,β, γ ∈ (Π ∪ Σ)∗, X ∈ Π, and w ∈ Σ∗

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 48 / 95

Chomsky Hierarchy

Chomsky Hierarchy - summary

Type-0 — recursively enumerable
languages:

unrestricted generative grammars
Turing machines (deterministic,
nondeterministic)
We are unable to compute, if words
belong to a language.

Type-1 — context-sensitive languages:
context-sensitive grammars
nondeterministic linear bounded
automata
Containing real programming
languages.
We are unable to analyze effectively, if
words belong to a language.

Type-2 — context-free languages:

context-free grammars

nondeterministic pushdown automata

Effective analysis (especially for some
sub-classes), if words belong to a
language.

Type-3 — regular languages:

regular grammars

finite automata (deterministic,
nondeterministic)

regular expressions

Even better performance

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 49 / 95

Chomsky Hierarchy

Chomsky Hierarchy

An example of a language that is context-free but is not regular:
{anbn | n ≥ 1}

An example of a language that is context-sensitive but is not context-free:
{anbncn | n ≥ 1}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 50 / 95

Lexical analysis

Lexical analysis - basic definitions

Lexical analysis (lexing or tokenization) is the process of converting an input (a text,
sequence of symbols) into a sequence of lexical symbols (tokens).
A program that performs lexical analysis may be termed a lexer, tokenizer, or scanner
(sometimes it is also used for the first step in lexical analysis).
Basic definitions:

Lexemes - it is a sequence of characters in the source program that matches the pattern for
a token and is identified by the lexical analyzer as an instance of that token.
Token (lexical symbol) category (class, name) - identifier, number, operator,...
Token (lexical symbol) is a pair (token category, token value)

Usually, a token value is the corresponding lexeme - (identifier, "start").
Sometime, there is no value - (if, "")
Sometime, the value is processed and the lexeme is converted to other value (integer, 60)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 51 / 95

Lexical analysis

Lexical analysis I

A set of rules, that defines the lexical syntax is usually called lexical grammar.
The lexical syntax is on purpose a regular language.

Best tool to define lexemes are regular expressions.
Best tool to recognize lexemes in the input are finite automatons.

Usually, the lexical grammar is a set of named definitions:
MUL : '*' ;
ADD : '+' ;
ID : [a-zA-Z]+ ; // match identifiers
INT : [0-9]+ ; // match integers
NEWLINE:'\r'? '\n' ; // return newlines to parser
WS : [\t]+ -> skip ; // toss out whitespace

These definitions often have a priority associated with them.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 52 / 95

Lexical analysis

Lexical analysis II

In theory, These named regular definitions are then converted to Deterministic Finite
Automaton (DFA).

Easy is to convert regular expressions to Non-deterministic Finite Automaton (NFA).
We know an algorithm to convert NFA → DFA.
By finite states, we can distinguish the original definitions.

When we want identify tokens, usually from left to right, the scanner repeatedly tries to
consume the longest sequence that corresponds to some of regular definitions.

intx - is identifier not a keyword.
When the lexeme is identified, we can form the resulting token.

The value in the token is then the text of the lexeme.
Optionally, we can compute the value in the token.

Some tools allow to add some code to the definition.
This code is then executed by Evaluator to get the real value in token.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 53 / 95

Lexical analysis

Lexical analysis - implementation I

Before, we described something like an
ideal case based on theory for lexical
analysis → not really like it must be
implemented.
For simple lexical grammars, direct
implementation is still good option.
It maybe also the best option for some
special cases, for example some special
treatment of indentations.

SkipSpaces();
if (Char.IsDigit(ch))
{

stringAttr="";
while (Char.IsNumber(ch))
{

stringAttr+=ch;
getch();

}
numberAttr=Int32.Parse(stringAttr);
return Tokens.NUMBER;

}
if (Char.IsLetter(ch)) {

stringAttr="";
while (Char.IsLetterOrDigit(ch))
{

stringAttr+=ch;
getch();

}
if(stringAttr.Equals("div"))

return Tokens.DIV;
return Tokens.IDENT;

}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 54 / 95

Lexical analysis

Lexical analysis - implementation II

We can implement some kind of previously described theory (DFK, regular expressions →
DFK,..), but it is impractical.
Solution: Use some tool.

Specialized lexical analyzer: Lex(Flex)
Lexical + Syntactic analyzer: JavaCC, ANTLR, Coco/R, YACC(Bison)

SKIP :
{

" " | "\r" | "\t"
}
TOKEN :
{

< ADD: "+" > | < SUB: "-" > | < MUL: "*" > | < DIV: "/" > | < MOD: "mod" >
}
TOKEN :
{

< CONSTANT: (<DIGIT>)+ > | < #DIGIT: ["0" - "9"] >
}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 55 / 95

Syntactic analysis

Syntactic analysis I

For syntactic analysis (syntax analysis, parsing) will use context-free languages.
Best human readable way, how to define such language is a context-free grammar (CFG).
Best way how to determine, that an input belong to a context-free language is a
push-down automaton (PDA).

What we want from the syntactic analyzer?
Check if the input is correct.
Recognize defined syntactic constructs in the input.
Build the derivation tree (for given input and context-free grammar).

Or some other form used in the next compiler’s steps.

How to do that? Let’s do some brainstorming, which tools we already have.
1 We can convert CFG to PDA → use it to check if the input is correct.
2 If the input belongs to the language generated by the grammar, there is a derivation that

generates the input.
3 We can search for it, but it will be time consuming → we need to do some sort of

backtracking.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 56 / 95

Syntactic analysis

Syntactic analysis II

While universal methods are possible, they are rarely used in practice due to being slow.
There are sub-classes of context free-grammars for which we can do the analysis faster.

The main idea behind them is: We want to somehow reduce the ambiguity.
Two main classes are:

Top-down parsing (LL grammars)
Tokens are consumed from left to right.
Based on finding the left-most derivations of an input-stream by searching for parse trees
using a top-down expansion of the given formal grammar rules.
ANTLR, JavaCC, Coco/R

Bottom-up parsing (LR grammars)
Again, tokens are consumed from left to right, but we are using (usually) right-most
derivation.
A parser can start with the input and attempt to rewrite it to the start symbol
There are several variants of LR parsers: SLR parsers, LALR parsers, Canonical LR(1) parsers,
Minimal LR(1) parsers, GLR parsers, ...
GNU Bison (Yacc)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 57 / 95

Syntactic analysis

Syntactic analysis III

What are common constructs appearing in programming languages? How do we capture these
constructs in a grammar?

Sequence (S → A B)
Alternative (S → A | B)
Hierarchy (E → (E))
Iteration (AAA...)

S → SA | A

S → AS | A

S → AS ′

S ′ → AS ′ | ε

Iteration with some delimiter
(A,A,A, ...)

S → S,A | A

S → A, S | A

S → AS ′

S ′ → , AS ′ | ε

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 58 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Motivation I

In these lectures, we will focus on LL(1) grammars.
They are probably the simplest to understand and learn.
It is very easy to implement (from scratch) a parser based on LL(1) grammars using
recursive descent.

Informally, the difference between LL(1) and context-free grammars → removed
ambiguity.
First, they are using left-most derivation - whats that?

E → E+ T | T

T → T ∗ F | F

F → n | (E)

E⇒ E+ T ⇒ T + T ⇒ F+ T ⇒ n+ T ⇒
n+T ∗F⇒ n+F∗F⇒ n+n∗F⇒ n+n∗n

As a consequence, we know exactly, which non-terminal we need to rewrite.
We do not know which of its right sides we should use.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 59 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Motivation II

Input: a1, a2, ..., an, an+1, ..., ai

Depicted point in analysis:
S⇒∗ a1, a2, ...anAβ

What we need to decide at this point?
A → α1 | α2 | ... | αj

We need to chose a right side.
What information we can use?

Non-terminal A needs to generate a
sequence starting with an+1.

We have defined LL(1) grammars in a
way, that this information is enough.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 60 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Set FIRST

Consider following examples:

A → aB | bC | c

A → Ba | c

B → bB | d

FIRST(α) is defined as a set of terminal
symbols which are the first letters of
strings derived from α.
We will chose corresponding right side
based on its FIRST set.

Definition

Lets have a context-free grammar G = (Π,Σ, S, P) and α ∈ (Π ∪ Σ)∗ then
FIRST(α) = {a ∈ Σ | α⇒∗ aβ,β ∈ (Π ∪ Σ)∗} ∪ {ε | α⇒∗ ε}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 61 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - How to compute FIRST

Before we start with an algorithm.
Lets have a context-free grammar G = (Π,Σ, S, P) and α ∈ (Π ∪ Σ)∗

We will need a set of non-terminal that can be rewritten as an empty word (is nullable):
Πε = {A ∈ Π | A⇒∗ ε}

We can compute FIRST(α) as:
1 If α = aβ where a ∈ Σ, β ∈ (Π ∪ Σ)∗ then FIRST(α) = {a}
2 if α = ε then FIRST(α) = {ε}
3 If α = Xβ where X ∈ Π \ Πε, β ∈ (Π ∪ Σ)∗, X → γ1 | γ2 | ... | γn then

FIRST(α) = ∪i∈{1..n}FIRST(γi) \ {ε}
4 If α = Xβ where X ∈ Πε, β ∈ (Π ∪ Σ)∗, X → γ1 | γ2 | ... | γn then

FIRST(α) = (∪i∈{1..n}FIRST(γi) \ {ε}) ∪ FIRST(β)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 62 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Using FIRST sets

Lets return to our original problem.

Input: a1, a2, ..., an, an+1, ..., ai

State: S⇒∗ a1, a2, ...anAβ

We need to chose a right side.
A → α1 | α2 | ... | αn

We will compute:
FIRST(α1), FIRST(α1), ...FIRST(αn)

If these sets are disjoint, we find a set
where an+1 ∈ FIRST(αj), j ≤ n, we will
use rule: A → αj

Because this rule is the only one, that is
able to generate an+1 at the beginning.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 63 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Set FOLLOW I

Does it solve all our problems? What if A has a right side: αi ⇒∗ ε, when it will be used if we
want to rewrite it to ε?

Input: a1, a2, ..., an, an+1, ..., ai

State: S⇒∗ a1, a2, ...anAβ

Where an+1 can be found? → It follows
right after A → It is in FIRST(β)

We will compute new set FOLLOW, for
each non-terminal.

We will use it to determine, if the right
side will be rewritten to ε.

Notice: Just one right side αi ⇒∗ ε, also
ε ∈ FIRST(αi).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 64 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Set FOLLOW II

Consider following example:

S → bAc

A → aA | ε

FOLLOW(A) is defined as a set of
terminal symbols, that directly follows
non-terminal A in any sentential form
that can be reached from the starting
non-terminal.

Definition

Lets have a context-free grammar G = (Π,Σ, S, P) and non-terminal A ∈ Π then
FOLLOW(A) = {a ∈ Σ | S⇒∗ αAβ, α, β ∈ (Π ∪ Σ)∗, a ∈ FIRST(β)}

Often, we need to know that we have reached the end of the input.
This is solved by special character($), that will mark the end of the input.
Then we need to modify our definition of FOLLOW, it will use
G ′

= (Π, Σ ∪ {$}, S
′
, P ∪ {S

′ → S$}) that comes from G.
Marek Běhálek (VSB-TUO) Programming Languages and Compilers 65 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - How to compute FOLLOW

Before we start with an algorithm.
Lets have a context-free grammar G = (Π,Σ, S, P) and A ∈ Π∗

We do not extend G, as was mentioned before, but the same result can be achieved by
adding $ to FOLLOW(S) at the beginning of the computation.

We can compute FOLLOW sets as:
Add to FOLLOW(S) the character marking the end of the input ($), i.e. $ ∈ FOLLOW(S).
To compute FOLLOW(A), for all rules: X → αAβ, where X ∈ Π, α, β ∈ (Π ∪ Σ)∗ do:

1 Add FIRST(β) \ {ε} into FOLLOW(A), i.e. FIRST(β) \ {ε} ⊆ FOLLOW(A)
2 If β ⇒∗ ε then add FOLLOW(X) to FOLLOW(A), i.e. FOLLOW(X) ⊆ FOLLOW(A)

Note, that both algorithms (for FIRST and FOLLOW) are recursive. If we want to
implement them, then we will probably use slightly different version.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 66 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Example I

A → BCd | aB

B → bB | ε

C → cA | ε

Ad,$ → BCdb, c, d | aBa

Bc,d,$ → bBb | εεεε

Cd → cAc | εεεε

FIRST(BCd) = (FIRST(bB) ∪ FIRST(ε)) \ {ε} ∪ FIRST(Cd) = {b} ∪ FIRST(Cb)
= {b} ∪ ((FIRST(cA) ∪ FIRST(ε)) \ {ε} ∪ FIRST(d) = {b} ∪ {c} ∪ FIRST(d)
= {b, c} ∪ {d} = {b, c, d}

FOLLOW(A) = FIRST(ε) \ {ε} ∪ FOLLOW(C) (from rule: C → cA) = FOLLOW(C)
= FIRST(d) \ {ε} (from rule: A → BCd) = {d}

{d, $} - If we consider A as starting non-terminal.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 67 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Example II

A → BCd | aB

B → bB | ε

C → cA | ε

Ad,$ → BCdb, c, d | aBa

Bc,d,$ → bBb | εεεε

Cd → cAc | εεεε

FIRST for non-terminals FOLLOW for non-terminals
A B C a b c d

A * * * *
B *
C *

A B C a b c d $
A * *
B * * * *
C *

A B C a b c d
A * * * * * *
B *
C *

A B C a b c d $
A * * *
B * * * * *
C *

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 68 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Definition I

We started with an idea, that we are reading the input from left to right, we are building
left-most derivation and the problem is, we want to decide, which right side of the
left-most non-terminal we should use.
This decision primarily based on FIRST, for nullable rules we will use also FOLLOW.
Formally, we can define SELECT sets, that will be used for this decision.

Definition

Lets have a context-free grammar G = (Π,Σ, S, P) and a rule (A → α) ∈ P where
A ∈ Π, α ∈ (Π ∪ Σ)∗, then:

if α⇒∗ ε then SELECT(A → α) = (FIRST(α) \ {ε}) ∪ FOLLOW(A)

else SELECT(A → α) = FIRST(α)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 69 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Definition II

LL(1)
The first L stands for scanning the input from left to right.
The second L stands for producing a leftmost derivation.
1 stands for using one input symbol of look-ahead at each step to make parsing action
decision.

Informally, LL(1) grammars are context-free grammars where the decision which
right-side we should use (in the left-most derivation) is deterministic → it is not
ambiguous and not left-recursive.

Definition

A context-free grammar G = (Π,Σ, S, P) is LL(1) if and only if for every A ∈ Π and every
α,β ∈ (Π ∪ Σ)∗, such that (A → α) ∈ P and (A → β) ∈ P and α ̸= β we have:

FIRST(α) ∩ FIRST(β) = ∅;
if α⇒∗ ε then FIRST(β) ∩ {ε} = ∅ and FIRST(β) ∩ FOLLOW(A) = ∅.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 70 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Definition III

Alternatively, we can define LL(1) grammars using SELECT sets.

Definition

A context-free grammar G = (Π,Σ, S, P) is LL(1) if and only if for every A ∈ Π and every
α,β ∈ (Π ∪ Σ)∗, such that (A → α) ∈ P and (A → β) ∈ P and α ̸= β we have
SELECT(A → α) ∩ SELECT(A → β) = ∅.

A d,$ → BCd b, c, d | aB a

B c,d,$ → bB b | ε εεε

C d → cA c | ε εεε

S ∗,),$ → S ∗ E (, i | E (, i

E ∗,),$ → TR (, i

R ∗,),$ → +TR + | εεεε

T +,?,∗,),$ → (S) (| T ? (, i | i i

Try to solve, if the grammars are LL(1).
Marek Běhálek (VSB-TUO) Programming Languages and Compilers 71 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Definition III

Alternatively, we can define LL(1) grammars using SELECT sets.

Definition

A context-free grammar G = (Π,Σ, S, P) is LL(1) if and only if for every A ∈ Π and every
α,β ∈ (Π ∪ Σ)∗, such that (A → α) ∈ P and (A → β) ∈ P and α ̸= β we have
SELECT(A → α) ∩ SELECT(A → β) = ∅.

A d,$ → BCd b, c, d | aB a

B c,d,$ → bB b | ε εεε

C d → cA c | ε εεε

S ∗,),$ → S ∗ E (, i | E (, i

E ∗,),$ → TR (, i

R ∗,),$ → +TR + | εεεε

T +,?,∗,),$ → (S) (| T ? (, i | i i

It is LL(1) Grammar It is NOT LL(1) Grammar
Notice, what are the problems that are the cause that the grammar is not LL(1).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 71 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser I

Definition

A pushdown automaton (PDA) is a tuple M = (Q,Σ, Γ, δ, q0, Z0) where
Q is a finite non-empty set of states
Σ is a finite non-empty set called an input alphabet
Γ is a finite non-empty set called a stack alphabet
δ : Q× (Σ ∪ {ε})× Γ → P(Q× Γ∗) is a (nondeterministic) transition function
q0 ∈ Q is the initial state
Z0 ∈ Γ is the initial stack symbol

A configuration of a PDA is a triple: (q,w,α) where q ∈ Q, w ∈ Σ∗, and α ∈ Γ∗.
An initial configuration is a configuration (q0, w, Z0), where w ∈ Σ∗.
Language recognised by non-deterministic PDA are exactly context-free languages.
Deterministic PDA are less powerful non-deterministic one.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 72 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser II

The question is: How to map LL(1) grammar on PDA? How does the algorithm transforming
context-free grammar to PDA works?

We are creating a single state PDA where its transition relation is constructed as follows:
1 expand - (1, ε,A, 1, α) for each rule: A → α
2 match - (1, a, a, 1, ε) for each symbol: a ∈ Σ

If the PDA accepts by empty stack, its initial stack symbol is the grammar’s start symbol.
At each step, the constructed NPDA can see:

the current input symbol;
the topmost stack symbol.

The whole idea behind LL(1) grammars was to be able to do this decision
deterministically → interesting observation is that constructed automaton follows the
same idea.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 73 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser III

We will do a little trick and define a slightly more advanced automaton → it will have
output → it will be leftmost derivation

We can create real PDA, if we really need to...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 74 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser IV

We have LL(1) grammar G = (Π,Σ, S, P)

Assume, that all rules r ∈ P are numbered, i.e. there is a function p : P → N that assigns a
unique number to each rule.

Following previous information, we want PDA where:
There is just one state (we can omit it).
The input alphabet is Σ ∪ {$}, where $ marks the end of input.
The stack alphabet is Σ ∪ Π ∪ {#}, we will use PDA that accepts by reaching # on stack.
The initial configuration is (w$, S#, ε) //(input, stack, output)

Parsing table M : (Σ ∪ Π ∪ {#})× (Σ ∪ {$})→ {expand i, pop, accept, error} where:
expand i: (w, Aβ, π) ⊢ (w, αβ, π i), for i = p(A → α)
pop: (aw, aβ, π) ⊢ (w, β, π)
error - syntactic error
accept - computation is finished, output contains left-most derivation

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 75 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser V

Building the parsing table M : (Σ ∪ Π ∪ {#})× (Σ ∪ {$})
For all rules (A → α) ∈ P where i = p(A → α) and for all x ∈ SELECT(A → α) is
M[A, x] = expand i.
For all a ∈ Σ is M[a, a] = pop

M[#, $] = accept

All unassigned fields in M are set to error.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 76 / 95

Syntactic analysis / LL(1) Grammars

LL(1) Grammars - Parser - Example

A d,$ → BCd b, c, d
1 | aB a

2
B c,d,$ → bB b

3 | ε εεε
4

C d → cA c
5 | ε εεε

6

a b c d $
A e2 e1 e1 e1
B e3 e4 e4 e4
C e5 e6
a pop
b pop
c pop
d pop
acc

(bcad$, A#, ε)
e1
⊢ (bcad$, BCd#, 1)

e3
⊢ (bcad$, bBCd#, 1 3)

pop
⊢ (cad$, BCd#, 1 3)

e4
⊢ (cad$, Cd#, 1 3 4)

e5
⊢ (cad$, cAd#, 1 3 4 5)

pop
⊢ (ad$, Ad#, 1 3 4 5)

e2
⊢

(ad$, aBd#, 1 3 4 5 2)
pop
⊢ (d$, Bd#, 1 3 4 5 2)

e4
⊢ (d$, d#, 1 3 4 5 2 4)

pop
⊢

($, #, 1 3 4 5 2 4)
acc
⊢ (1 3 4 5 2 4)

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 77 / 95

Syntactic analysis / LL(1) Grammars

How to Get LL(1) Grammar?

Until this point, everything that was defined (for LL(1) - FIRST, FOLLOW, parsing
table,...) can be computed (there is an algorithm).
Embarrassingly, there is no algorithm that converts any context-free grammar to LL(1).

For some context-free languages there is no LL(1) grammar generating them.
Some (especially ambiguous) grammars can not be transformed to LL(1).

What can be done?
Removing left recursion
From: A → Aα1 | Aα2 | ... | Aαn | β1 | β2 | ... | βm

To: A → β1A
′ | β2A

′ | ... | βmA ′

A ′ → α1A
′ | α2A

′ | ... | αnA
′ | ε

Left factorization (removing common prefix)
From: A → βα1 | βα2 | ... | βαn

To: A → βA ′

A ′ → α1 | α2 | ... | αn

Eliminating rules

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 78 / 95

Syntactic analysis / LL(1) Grammars

How to build a Top-down parser

Frequently used approach, how to implement top-down parser is recursive descent.
A set of mutually recursive procedures where each such procedure implements one of the
non-terminals of the grammar.
It can be implemented using:

backtracking - it determines which production to use by trying each production in turn,
possible for all grammars, but it terminates only for LL(k) grammars, may require
exponential time.
predictive parse (form of non backtracking parser) - possible only for LL(k), linear time.

LL(k) grammars - removes ambiguity - remove left recursion, left factored grammars.
LL(1) grammars - we have used a parsing table, no recursion.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 79 / 95

Implementing Parser for LL(1) Grammars / Recursive Descent

Recursive Descent for LL(1) Grammars I

Lets have have LL(1) grammar G = (Π,Σ, S, P)

Terminals are represented by a function expect, that matches the current token against
a predicted token.
Token token; // current token

void expect(Token expectedToken)
{

if(token == expectedToken) token = scanner.NextToken();
else Error();

}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 80 / 95

Implementing Parser for LL(1) Grammars / Recursive Descent

Recursive Descent for LL(1) Grammars II

Each non-terminal is represented by a function, that performs its analysis.
Assume we have a non-terminal A with just one rule: A → x1 x2 ... xn it will be
represented by:

void A()
{

// analysis of x1
// analysis of x2
...
// analysis of x3

}
The analysis of:

x ∈ Σ - calling function expect
x ∈ Π - calling function x.

Example: Lets have a non-terminal with just
one rule: E → + T E ;

void E()
{

expect(Token.Plus);
T();
E();
expect(Token.Semicolon);

}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 81 / 95

Implementing Parser for LL(1) Grammars / Recursive Descent

Recursive Descent for LL(1) Grammars III

What if the non-terminal have several right sides?
Assume: A → α1 | α2 | ... | αn

For the decision we will use (again): SELECT(A, αi)

void A() {
if (Select("A", "alpha 1").Contains(token)) {

// analysis of 1st symbol of alpha 1
// analysis of 2nd symbol of alpha 1
...

}
if (Select("A", "alpha 2").Contains(token)) {

// analysis of 1st symbol of alpha 2
// analysis of 2nd symbol of alpha 2
...

}
...

}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 82 / 95

Implementing Parser for LL(1) Grammars / Recursive Descent

Recursive Descent for LL(1) Grammars - Example

E → TE
(,n
1

E1 → +TE +
1 | ε $,)

T → FT
(,n

1

T1 → ∗FT *
1 | ε $,),+

F → (E) (| nn

void E() {
T();
E1();

}

void E1() {
if (token == Token.Plus) {

expect(Token.Plus);
T();
E1();

} else if (token == Token.EOF
|| token == Token.RPar) {

// epsilon
} else {

Error();
}

}
...

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 83 / 95

Implementing Parser for LL(1) Grammars / Non-recursive Predicative Analysis for LL(1)

Non-recursive Predicative Analysis for LL(1) I

What if we want to implement for our LL(1) grammar mentioned PDA? → Not that
hard.

Syntactic analyzer will be driven by a parsing table. Main memory will be a stack.
What expect to have:

Parsing table: M[A, α]
Stack: push(α), pop(), top()
Output: output(i)
Controlling errors: error()

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 84 / 95

Implementing Parser for LL(1) Grammars / Non-recursive Predicative Analysis for LL(1)

Non-recursive Predicative Analysis for LL(1) II

Algorithm: Top-level of the predicative parser

push(#S);
a := scanner.NextSymbol();
do

X := top() ;
if X ∈ (Σ ∪ {$}) then

if X = a then
pop();
a := scanner.NextSymbol();

else error() ;
else if M[X, a] = expandpi then

pop() ; // There is a rule numbered: pi : X → Y1 Y2 ... Yn

push(Yn Yn−1 ... Y1) ;
output(i);

else error() ;
while X ̸= #;

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 85 / 95

Implementing Parser for LL(1) Grammars / Compiler-Compilers

Compiler-Compiler - Parser Generator

Why to bother with implementation from scratch? → Use a tool: compiler-compiler
(compiler-generator, parser generator)
Various tools, based on various theoretical models (LALR(1), LL(k), ...).
We are not limited by LL(1).
The input is usually a sort of Extended BNF → the output is a program in programming
language, in which you are implementing a compiler.
There are plenty of such tools
(https://en.wikipedia.org/wiki/Comparison_of_parser_generators)

ANTLR4 - AdaptiveLL(∗), input: EBNF output: C#, Java, Python, JavaScript, C++,
Swift, Go, PHP runs on: JVM.
JavaCC - LL(k), input: EBNF output: Java, C++, JavaScript runs on: JVM.
Coco/R - LL(1), input: EBNF output: C, C++, C#, F#, Java, Ada, Object Pascal,
Delphi, Modula-2, Oberon, Ruby, Swift, Unicon, Visual Basic .NET runs on: JVM, .NET.
GNU Bison - LALR(1), LR(1), IELR(1), GLR input: Yacc output: C, C++, Java .NET runs
on: (GNU) All.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 86 / 95

https://en.wikipedia.org/wiki/Comparison_of_parser_generators

Implementing Parser for LL(1) Grammars / Compiler-Compilers

Compiler-Compiler - ANTLR4

We will use it for our project.
grammar Calculator;
// parser
start : expr | <EOF> ;

expr : '-' expr # UMINUS
| expr mulop expr # MULOPGRP
| expr addop expr # ADDOPGRP
| '(' expr ')' # PARENGRP
| NUMBER # DOUBLE
;

addop : '+' | '-' ;
mulop : '*' | '/' | '%' ;

// lexer
NUMBER : ('0' .. '9') + ('.' ('0' .. '9') +)? ;
WS : [\r\n\t] + -> skip ;

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 87 / 95

Implementing Parser for LL(1) Grammars / Compiler-Compilers

Compiler-Compiler - JavaCC

options {
IGNORE_CASE = true; DEBUG_PARSER = true;

}
PARSER_BEGIN(Calc)
public class Calc {

public static void main(String args[])
throws ParseException

{ Calc parser = new Calc(System.in);
parser.expr();

}
}
PARSER_END(Calc)

SKIP :
{ " " | "\r" | "\t" }
TOKEN :

{ < EOL: "\n" > | < SEMICOLON: ";" > |
<ADD: "+"> | <SUB: "-"> |
<MUL: "*"> | <DIV: "/"> | <MOD: "mod"> }

TOKEN :
{ <CONSTANT: (<DIGIT>)+ >
| <#DIGIT: ["0" - "9"]> }

void expr() : { }
{ term() (("+" | "-") term())* }

void term() : { }
{ factor() (("*" | "/" | "mod") factor())* }

void factor() : { }
{ <CONSTANT> | "(" expr() ")" }

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 88 / 95

Implementing Parser for LL(1) Grammars / Compiler-Compilers

Compiler-Compiler - Bison (Yacc)

Just syntactic analyzer (Lex-Flex).
%{
#include <stdio.h>
#define YYSTYPE double
%}
%token NUMBER
%token PLUS MINUS TIMES DIVIDE POWER
%token LEFT RIGHT
%token END
%left PLUS
%left TIMES
%left NEG
%start Input
%%
Input: /* empty */ | Input Line;
Line: END

| Expression END { printf("%f\n", $1);}
;
Expression:

NUMBER { $$=$1; }
| Expression PLUS Expression { $$=$1+$3; }
| Expression TIMES Expression { $$=$1*$3; }
| MINUS Expression %prec NEG { $$=-$2; }
| LEFT Expression RIGHT { $$=$2; }
;
%%
int yyerror(char *s) {

printf("%s\n", s);
}
int main() {

yyparse();
}

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 89 / 95

LR Grammars

LR Grammars I

LR Grammars
Reading input from Left to right.
Right-most derivation in reverse.

Bottom-up parser.
Any LR(k) can be transformed to LR(1).

In practice we use LR(1).
Really we are using: SLR, LALR, GLR,
Canonicla LR(1),...

Larger class than LL(k).

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 90 / 95

LR Grammars

LR Grammars II

E → E+ T | T

T → T ∗ F | F

F → n | (E)

E⇒ E+ T ⇒ E+ T ∗ F⇒ E+ T ∗ n⇒
E+ F ∗ n⇒ E+ n ∗ n⇒ T + n ∗ n⇒
F+ n ∗ n⇒ n+ n ∗ n

Stack Input Output
n + n * n $

n + n * n $ F → n

F + n * n $ T → F

E + n * n $ E → T

E + n * n $
E + n n * n $ F → n

E + F * n $ T → F

E + T * n $
E + T * n $
E + T * n $ F → n

E + T * F $ T → T ∗ F
E + T $ E → E+ T

E $ accept

Table: Example of an LR analysis

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 91 / 95

Error Handling

Error Handling I

What is an error? Where does it occurs? What are the examples of errors?
Just Errors - unexpected behaviour of the program → beyond the scope of this lecture.
Run-time Errors
Compile-time Errors ← we will focuse on this.

Compile-time Errors
Lexical analysis (not closed string, illegal character) - usually easy, small number of well
defined errors.
Syntactic analysis (missing semicolon or parenthesis) - if we are talking about approaches to
error handling, usually we are referring to handling syntax errors.
Semantic analysis (various type related errors) - more complex, implementation depends on
other factors like used intermediate representation.
Logical errors (infinite loop, unreachable code)

Good error handling is not easy to achieve.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 92 / 95

Error Handling

Error Handling II

Functions of Error Handler:
Error Detection
Error Report
Error Recovery

Approaches to Syntax Errors Recovery:
Panic mode (the easiest and the most frequent way)
Phase level recovery (local corrections) - when an error is discovered, the parser performs
local correction on the remaining input, so that the parser can continue.
Error productions - common errors are included as rules in the parser’s grammar and solved.
Global corrections - the parser analyzes the whole input and tries to find the closest
error-free version.

History
In the past, the compilation was slow → error recovery was important → we want to find as
many errors as possible.
Now, compilations time is usually not an issue → it is not that important → less but more
precise reported errors is enough.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 93 / 95

Error Handling

Panic Mode Error Recovery I

What to do, if we encounter syntactic error?
We can stop the parser and report this error (valid option).
We can try to recover.

How can we recover after an error in LL(1) parser?

1 We need to define some synchronizing
tokens, that defines, where we are in the
grammar.

2 When we encounter an error, we will skip
the input until the next synchronizing
token.

3 we will search for the corresponding
place in the current grammar’s
evaluation (derivation tree).

4 We will continue the analysis.
Marek Běhálek (VSB-TUO) Programming Languages and Compilers 94 / 95

Error Handling

Panic Mode Error Recovery II

It looks great, but What are the issues with the error recovery?
What should be the synchronizing token?
Are these synchronizing tokens fixed? Or they are changing trough the computation?
Conflicting requirements - the more ambitious error recovery, the less precise it is.

The method, how we handle the problem of synchronizing tokens, is usually called error
recovery schema.

For example, for LL(1) grammars we can use FIRST and FOLLOW sets to define
synchronizing tokens.

Marek Běhálek (VSB-TUO) Programming Languages and Compilers 95 / 95

Error Handling

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

March 2, 2022

	Introduction to the area of programming languages and compilers
	History of programming languages
	First programming languages
	Notable Programming languages

	Classification of Programming Languages
	Specification of programming languages
	Compilers
	Basic properties
	Types of compiles
	Transformation of Source Codes
	Compiler's inner structure

	Formal languages
	Chomsky Hierarchy
	Lexical analysis
	Syntactic analysis
	LL(1) Grammars

	Implementing Parser for LL(1) Grammars
	Recursive Descent
	Non-recursive Predicative Analysis for LL(1)
	Compiler-Compilers

	LR Grammars
	Error Handling

