
www.vsb.cz

Haskell Tools
behalek.cs.vsb.cz/wiki/Practical_Functional_Programming

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

October 31, 2022

Haskell Tools

This will be no comprehensive guide containing all possible development tool for Haskell.
We will cover only some basic options.

We will really cover only one tool: stack.
The tool stack internally uses tool cabal.
All these tool can be installed by ghcup. You can check, what you have installed by:

ghcup list

What we want to cover by this (short) presentation:
Create, build and run a project.
Add dependencies on libraries.
Debug a project.

Marek Běhálek (VSB-TUO) Haskell Tools 1 / 8

Stack vs Cabal

Stack is a build tool and it uses Cabal.
Cabal defines the concept of a package.

A Cabal file, name, version, dependencies on other packages, and more.
Stack defines a new concept called a project.

A resolver, which tells it about a snapshot.
Extra dependencies on top of the snapshot.
Optionally, one or more local Cabal packages.
Flag and GHC options configurations.
And a bunch more Stack configuration.

Marek Běhálek (VSB-TUO) Haskell Tools 2 / 8

Creating Stack project

Libraries and dependencies change frequently → stack update

Several project templates (stack templates)

simple - just .cabal configuration file, simple main.
(default) new − template - provides package.yaml , it is used generate a corresponding

.cabal file, contains main along with a simple library and tests.

stack new MyProject

Main configuration files:
stack.yaml contains project-level configuration for Stack, and may contain
project-specific options and non-project-specific options.
package.yaml contains a description of a package in the Hpack format. Hpack,
including Stack’s built-in version, uses the file to create a Cabal file.
Cabal file also contains a description of a package, but in the format used by Cabal.

Marek Běhálek (VSB-TUO) Haskell Tools 3 / 8

Dependencies

stack.yaml : "If at any point you find that you need to build the acme−missiles
package, please use version 0.3"

extra-deps:
- acme-missiles-0.3

package.yaml : "Please build acme−missiles now."

dependencies:
- acme-missiles

Cabal file: "This package requires that acme−missiles be available."

build-depends: acme-missiles

Marek Běhálek (VSB-TUO) Haskell Tools 4 / 8

Building a project

Initialization: stack setup (gets GHC)

Build: stack build

Clean: stack clean

Running the project:

stack exec myProject-exe arg1 arg2
stack run

Run ghci in context of packages:

stack repl
stack ghci

Marek Běhálek (VSB-TUO) Haskell Tools 5 / 8

Debugging in GHCi (1)

1 Breakpoints - the ability to set a breakpoint on a function definition or expression in the
program.

2 Single-stepping - the evaluator will suspend execution approximately after every
reduction, allowing local variables to be inspected. This is equivalent to setting a
breakpoint at every point in the program.

3 Execution can take place in tracing mode, in which the evaluator remembers each
evaluation step as it happens, but does not suspend execution until an actual breakpoint
is reached. When this happens, the history of evaluation steps can be inspected.

4 Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

Marek Běhálek (VSB-TUO) Haskell Tools 6 / 8

Debugging in GHCi (2)

Breakpoints
We can set a break point: :break [module] line [column] or :break identifier
Show breakpoints: :show breaks
Show context: :show context
Disable break-point: :disable 0
Delete break-point: :delete *
List a source code around break point: :list
To print variables we can use: :print and :force

Continue to the next break-point: :continue , abandon: :abandon

Single-stepping
Enable a break points for whole program: :step [expression]

Marek Běhálek (VSB-TUO) Haskell Tools 7 / 8

Debugging in GHCi (3)

Tracing
You need to set breakpoints, then run a tracing: :trace [expression]

We can move in this trace log: :back [n] and :forward [n]

Debugging exceptions
Setting breakpoints on exceptions: ::set -fbreak-on-exception

Setting breakpoints on errors: ::set -fbreak-on-error

Marek Běhálek (VSB-TUO) Haskell Tools 8 / 8

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

October 31, 2022

	

