VSB TECHNICKA VSB TECHNICAL
” ” UNIVERZITA “ ” UNIVERSITY
OSTRAVA [" oF osTRAVA

www.vsb.cz

Monads in Haskell

behalek.cs.vsb.cz/wiki/Practical Functional Programming

Marek Béhalek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL
|| || UNIVERSITY | ENGINEERING AND COMPUTER
OF OSTRAVA SCIENCE

Motivation El Applicative

Functions with No Side Effects Monads

IO Monad - practical approach Programming with actions
Category Theory m List Monad

Monoid m O Monad

@ Functor m State Monads

Fun with Functors Arrays in Haskell

El Monoidal Categories Conclusion

Marek Behalek (VSB-TUO) Monads in Haskell 1/61

Functional programming | |||||

m Declarative style of programming
m We define what needs to be computed, a run-time environment responsibility is how it will

be evaluated.
m Similar to math, we have various rules how to simplify an expression, but there are different

ways how these rules can be applied for given expression.

m Programming with expressions (no statements)
m Functional program is a set of function's definitions.
m Functions are first class citizens - a function can return a function, high-order functions,
partially evaluated functions.
m Program’s evaluation is the evaluation of some main expression.
m Immutable data structures - once created data can not be changed.
m Studied problem, plenty of possibilities.
m Common in APl of many languages (C#: string, DateTime,
https://wuw.nuget.org/packages/System.Collections. Immutable/).
m Sometimes they are called persistent data structures.

Marek Behalek (VSB-TUO) Monads in Haskell 2 /61

https://www.nuget.org/packages/System.Collections.Immutable/

Functional programming || |||||

B https://en.wikipedia.org/wiki/Persistent_data_structure
B https://en.wikipedia.org/wiki/Persistent_array

m What if | really need mutable data structure?

m For example quick implementation of quicksort?

m No side effects
m Functions only return values, no changes other changes.
m For the same parameters, we always get the same result (referential transparency).
m But, sometimes side effects can not be avoided (input - output operations) - how to solve
that?

Marek Behalek (VSB-TUO) Monads in Haskell 3/61

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_array

Functions with No Side Effects (1) |||||

m What are side effects, how do i recognise them?

public double Add(double a, double b) {
return a + b;

}
public double Add2(double a, double b) {
try {
Console.WriteLine(@"a={a}, b={b}");
} catch (Exception ex) { }
return a + b;
}

public int Divide(int a, int b) {
return a / b;

}

Marek Behalek (VSB-TUO) Monads in Haskell 4 /61

Functions with No Side Effects (2) |||||

m How can | avoid them? public class NonZeroInteger {

public int? Divide2(int a, int b) { public int Number { get; }

if (b == 0)

return null; public NonZeroInteger (int number) {

return a / b; Number = number;

} if (number == 0)
throw new ArgumentException();

public int Divide3(int a, NonZeroInteger b) { }

return a / b.Number; }
}

Marek Behalek (VSB-TUO) Monads in Haskell 5 /61

Functions with No Side Effects

Expressions (1) |||||

m Lets start with data type Maybe
data Maybe a = Nothing | Just a

betterDiv :: Int -> Int -> Maybe Int
betterDiv x y | y==0 = Nothing
| otherwise = Just (x ~div” y)

m Now we want to compute some expressions where we use it like a value type.

data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

Marek Behalek (VSB-TUO) Monads in Haskell 6 /61

Expressions (2) |||||

= Now we need to compute such expression
eval :: Expr -> Maybe Int
eval (Num x) = Just x
eval (Div x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of
Nothing -> Nothing
Just y' -> betterDiv x' y'
eval (Add x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of
Nothing -> Nothing
Just y' -> Just (x' +y")
m We can see emerging patter, how actions are linked one after the other.

Marek Behalek (VSB-TUO) Monads in Haskell 7 /61

Functions with No Side Effects

Logging (1)

m Lets have simple operations.
compute :: Int

compute x =

isItEnough ::

isItEnough x

m We want then to compute values and log the context.
compute :: (Int, String) -> (Int, String)
compute (x, log) = (x * x, log ++ "Just square of x.")

isItEnough ::

m |t this a good solution? How to improve the quality of our solution?

Marek Behalek (VSB-TUO)

(Int, String) -> (Bool, String)
isItEnough (x, log) = (x > 9, log ++ "Compared to 9.")

Monads in Haskell

8 / 61

Logging (2) il

m What if | want to add the new entry at the start of log?
compute :: Int -> (Int, String)
compute x = (x * x, "Just square of x.")

isItEnough :: Int -> (Bool, String)
isItEnough x = (x > 9, "Compared to 9.")

applyLog :: (a,String) -> (a -> (b,String)) -> (b,String)
applylog (x,log) f = let (y,newlog) = f x in (y,log ++ newLog)

xMain> applyLog (applylLog (2,"Initial value 2.") compute) isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

*Main> (2,"Initial value 2.") “applylog™ compute ~applylog” isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

m Is this the end? Can it be improved even further?

Marek Behalek (VSB-TUO) Monads in Haskell 9 /61

Monads - what a strange word. |||||

m What if they can not be avoided? Applicative or Monad that comes from
m For example input - output operations? the category theory.
inputInt :: Int m For orthodox programmer, it is just
some theory gibberish, for the others, it
inputDiff = inputInt - inputInt may provide interesting insight to the
problem.
funny :: Int-> Int m Informally, a sort of pure functional
funny n = inputInt + n envelop for non-pure actions.
m Haskell uses programming with actions m Practically, its a set of design patterns
to solve this issue. solving plenty of situations that are
m Theoretically, we use thinks like Functor, frequently occurring in practice.

Marek Behalek (VSB-TUO) Monads in Haskell 10 / 61

IO Monad (1) |||||

m This part is for programmers, that do not care about a theory.
m There is a special type () with only value () called unit type - representing a sort of
dummy value.
= All input and output actions can be recognized by having I0 in their type definition.
® Input: getLine :: IO String
m Output: putStr :: String -> I0 ()
m Usually, when we are talking about monads, we say, that they represents some sort of
containers — better intuition for I0 is: bake :: Recipe Cake.
m You can glue these actions by syntax construct: do.
= How to get value from/to 107
m There is a syntactic construct in do (called bind): x <- action, where if

action :: IO a, then the type of variable z is a.
m There is a function return :: a -> I0 a, it can be used to put a common value into I0.
m Finally, the function main has a type: main :: I0 a

m And that is all, Is it clear?

Marek Behalek (VSB-TUO) Monads in Haskell 11 / 61

IO Monad (2) Iyl

m Simple example:
main = do
putStrLn "Hello, what's your name?"
name <- getLine
let bigName = map toUpper name
putStrLn ("Hey " ++ bigName ++ ", you rock!")

m Now, we can compile it and execute.

Marek Behalek (VSB-TUO) Monads in Haskell 12 / 61

IO Monad (3) |||||

m The construct do is just an expression, we can use it in the same way...
main = do
line <- getLine
if null line
then return ()

else do
print $ reverseWords line
main
reverseWords :: String -> String

reverseWords = unwords . map reverse . words

m You should notice, that return does not end the function like in common languages.
main = do
a <- return "hell"
b <- return "yeah!"
putStrln $ a ++ " " ++ b

Marek Behalek (VSB-TUO) Monads in Haskell 13 / 61

10 Monad - practical approach

IO Monad (4)

m Interesting question, can we use high order functions with monad 107

mySequence :: [I0 a] -> I0 [a]
mySequence [] = return []
mySequence (ma:mas) = do

a <- ma

as <- sequence mas
return (a:as)

m Plenty of functions in: Control.Monad.

Marek Behalek (VSB-TUO) Monads in Haskell 14 / 61

IO Monad (5) Iyl

m For example forM (this is as close to for cycle as you can get in Haskell :-)
import Control.Monad

main = do
lines <- forM [1,2,3] (\a -> do
putStrln $ "Give me " ++ show a ++ " line."
getLine)
print lines

Marek Behalek (VSB-TUO) Monads in Haskell 15 / 61

IO Monad (6) |||||

= We can use I0 monad for working with files.
m For example we can start with: openFile :: FilePath -> IOMode -> I0 Handle

import System.IO

main = do
handle <- openFile "test.hs" ReadMode
contents <- hGetContents handle
putStr contents
hClose handle
m But, there are plenty of other functions:
®m withFile :: FilePath -> I0OMode -> (Handle -> I0 a) -> I0 a

m readFile :: FilePath -> I0 String
m writeFile :: FilePath -> String -> I0 (), also appendFile

Marek Behalek (VSB-TUO) Monads in Haskell 16 / 61

IO Monad (7) |||||

m Haskell also have exceptions — high order function:
catch :: Exception e => I0 a -> (e -> I0 a) -> I0 a

import System.IO
import System.IO.Error

main = toTry “catch™ handler

toTry :: I0 ()
toTry = do contents <- readFile "test.txt"
putStrln $ "Lines: " ++ show (length (lines contents))

handler :: IOError -> I0 ()
handler e = putStrLn "Whoops, had some trouble!"

m Functions like isDoesNotExistError or isFullError to distinguish between exception.

Marek Behalek (VSB-TUO) Monads in Haskell 17 / 61

IO Monad (8) |||||

m System.Environment - for example, for handling command line arguments:
getArgs :: I0 [String].
m System.Random - also random numbers are part of monad 10, but here it is complicated.
m We need to install package random: stack ghci --package random
= Now we have:
random :: (RandomGen g, Random a) => g -> (a, g)
randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)

ghci> random (mkStdGen 1) :: (Bool, StdGen)

(True,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})
ghci> randomR (1,6) (mkStdGen 1)

(6,5tdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})

m 10 have also one random generator (getStdGen) stored inside — we can use functions:
randomI0O, randomRIO.
m Be warned. All REAL programmers should stop reading NOW. We will continue with the
theory behind monads so we can outgrowth the |0 monad
Marek Behalek (VSB-TUO) Monads in Haskell 18 / 61

Category Theory

Category Theory - why to study? We are programmers! |||||

m Programming is based on math.
m What kind of math? — geometry, algebra, topology, set theory, type theory, ...

m There are different kinds of mathematics — even if developed independently, they share
some ideas (for example Curry—Howard correspondence) — Category theory reveals
how different kinds of structures are related to one another.

m Category theory is a toolset for describing the general abstract structures in mathematics.

m Category theory is very well suited for programmers — things we normally do overlap
with problems category theory is studying.

m It deals with structure, omitting particulars (abstraction).
m In its roots, it study composition — holy grail of programming (bigger blocks are composed
from components) — composition is crucial in many programming paradigms.

m Haskell have been tapping category theory for a long time, but the ideas can be used also
in other languages.

Marek Behalek (VSB-TUO) Monads in Haskell 19 / 61

Category Theory - Basics (1) |||||

m Category C is algebraic structure consisting of:

m collection of objects - 0bj(C)
m arrows (or morphisms or maps) - hom/(C)

® f:a—b- fis a morphism from a to b.
m hom(a,b) - hom-set - denotes a set of morphisms from a to b.

m Also, we have a binary operation o called composition of morphisms.
m For any three objects a, b and ¢: o : hom(b, c) x hom(a,b) — hom(a, c).
m For any pair of f :a — b and g : b — c there exists a composition (composite morphism)
written as go f 1 a — c.
m Identity: For every object z, there exists a morphism 1, : — x called the identity
morphism for x, such that for every morphism f:a — b, we have 1,0 f = f = fol,.

m Associativity: If f:a—b,g:b—candh:c— dthen ho(go f)=(hog)of.

Marek Behalek (VSB-TUO) Monads in Haskell 20 / 61

Category Theory

Category Theory - Basics (2) |||||

h multigraph where objects are verticies,
and morphisms are oriented edges.
m When we are talking about categories in

programming, most common example
are types and functions.

m For example our figure depicts

functions:
f::a->b
g ::b->c
Figure: Are these schematics for categories? m Function g o f can be defined as:
gf :: a->c
m Usually, a schematics for a category is a gf = \x -> g (f x)

Marek Behalek (VSB-TUO) Monads in Haskell 21 /61

T —
Category Theory - Monoid |||||

m Important algebraic structure in category theory is monoid.
m Part of set theory, used even before the whole category theory thing — we already know
this term from set theory — what is their relation?
m Aset S with x: 5 x S — S (multiplication) is a monoid M if it satisfies:
m Associativity: For all a, b and c in S, the equation (a % b) * ¢ = a * (b ¢) holds.
m Unit element: There exists an element e (unit) in S such that for every element a in S, the
equalities exa = a and a x ¢ = a hold.
® An individual monoid (M, %, e) can be a category C' where:
m the collection of objects obj(C) is single object - M;
m the collection of morphisms hom(C) is set M itself, which mean, each element in set M is
a morphism in category C;
m the composition operation o of C' is * - since each morphism in C is element in M, the
composition of morphisms is just the multiplication of elements;
m the identity morphism of C is unit element e
m In this way, since M ,x and e satisfies the monoid laws, apparently the category laws are
satisfied.
Marek Behalek (VSB-TUO) Monads in Haskell 22 /61

Monoid in Haskell (1)

m Stop this theory gibberish, what it has to m
do with mentioned practical examples?

m Let's define monoid in Haskell.
-- Data.Monoid

-- class Semigroup a => Monoid a where

class Monoid m where

mempty :: m
mappend :: m ->m ->m
mconcat :: [m] ->m

mconcat = foldr mappend mempty

Marek Behalek (VSB-TUO)

Monads in Haskell

What about the rules for monoid?
mempty “mappend” x = X
x “mappend’ mempty = X
(x “mappend” y) “mappend’ z
= x “mappend” (y “mappend’ z)

(This is embarrassing.) Haskell can not

enforce them, programmer is kindly
asked to obey them.

23 / 61

SMemed
Monoid in Haskell (2) |||||

m Plenty of types are instances of Monoid.

instance Monoid [a] where
mempty = []
mappend = (++)

m All, Any, First, Last, Maybe, Ordering, IO, Sum, Product,

= Do you remember our logging example? We can modify our logging function like this:
applyLog :: (Monoid m) => (a,m) -> (a -> (b,m)) -> (b,m)
applylog (x,log) f = let (y,newlog) = f x in (y,log “mappend newLog)

*Main> (2,"Initial value 2.") “applylLog™ compute ~applylog™ isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

m The result is the same, but now... (wait for it:-)

Marek Behalek (VSB-TUO) Monads in Haskell 24 / 61

Monoid in Haskell (3) |||||

m We can use the same function applyLog with all types that are instances of Monoid.

m Let's say, we want to log just some events.
addMore :: Int -> (Int, Maybe String)

addMore x
| x == 2 = (x+1, Just "Nice.")
| x ==1=(x+1, Just "More!")

| otherwise = (x+1, Nothing)

*Main> (1,Nothing) ~applylLog™ addMore ~applylLog ™ addMore “applyLog ™ addMore
(4,Just "More!Nice.")

m Is it better then before? \We all agree that it is. Right 717

Marek Behalek (VSB-TUO) Monads in Haskell 25 / 61

Functor (1) |||||

m Motivation
m Our original goal was to find some nice (design) patterns for frequently occurring problems.
m Lets say, we found one, what next? — prepare abstract solution capturing the idea — apply
it to solve other problems.
m In terms of categories, this abstraction is captured by a category and we need to transfer it
to other categories.

m Functor is a mapping between categories that preserve a structure — it preserve identity
morphisms and composition of morphisms.
m Let C and D be categories. A functor F' from C to D is a mapping (function) that:

m associates each z in 0bj(C') to an object F(X) in obj(D),
m associates each morphism f: X — Y in C to a morphism F(f) : F(X) — F(Y) in D such
that the following two conditions hold:

B F(idy) = idp(y) for every z in obj(C),
m F(go f)=F(g)o F(f) for all morphisms f: X Y andg:Y — ZinC

Marek Behalek (VSB-TUO) Monads in Haskell 26 / 61

Functor

Functor (2)

But how to implement functors in Haskell?

m Lets say, we just want to add Maybe for
capturing errors — We want to map our
structure to Maybe category — We need
a functor.

m First, we need to map objects (types) —
type constructor Maybe

m Second, we need to map morphisms
(functions):
fmap :: (a->b) -> (Maybe a -> Maybe b)
fmap f (Just x) = Just (f %)
fmap _ Nothing = Nothing

Marek Behalek (VSB-TUO) Monads in Haskell

Maybe a

Maybe
fmap f

Maybe b

27 / 61

Functor (3) |||||

m Let's try to generalize this approach. We m Kind in haskel is a type of the type.

introduce new type class: Functor
*Main> :kind Int

-- (x -> %) -> Constraint
Int :: *
class Functor f where , .
*Main> :kind Maybe
-—-$:: (a->b) ->a ->b TR R
fmap :: (@ ->b) ->fa->fb yoe i
= What is f in the definition? — A type m Note, the result is similar to operator $,
constructor with kind * -> * and a we can even use it in the same way.
method fmap. .
m There is even an operator: <$> = fmap

Marek Behalek (VSB-TUO) Monads in Haskell 28 / 61

Functor (4) Iyl

m So, we can do:

= What about operations like +7?

m Again, plenty of types are instances of Functor.
m List [] here: fmap = map
m ->, First, Last, Sum, Product, Min, Max, Identity, 10, ST a, Array i,...

Marek Behalek (VSB-TUO) Monads in Haskell 29 / 61

Functor (5) |H”

m What about Either a b, can it be a functor?
ok > % > %
data Either a b = Left a

| Right b

m Not really, but Either a is OKI
instance Functor (Either a) where

fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)

m When we are defining a function, we are using ->. What is it? Can it be a functor? How

to define fmap then?

Marek Behalek (VSB-TUO) Monads in Haskell 30 / 61

Functor (6) |||||

Is that all? What about the rules from the functor definition?
fmap id == id -- Identity
fmap (f . g) == fmap f . fmap g -- Composition

m Again, programmer is kindly asked to obey them.

m It does not obey mentioned rules, but it will work.

data CMaybe a = CNothing | CJust Int a

instance Functor CMaybe where
fmap f CNothing = CNothing
fmap f (CJust counter x) = CJust (counter+1) (f x)
Endofunctor is a functor where the source and the target category is the same.
m Strictly speaking, the Functor class represents endofunctors on the category of Haskell
types and functions.
m Endofunctors are interesting because they do a good job of representing structures inside
categories that work for any object.

Marek Behalek (VSB-TUO) Monads in Haskell 31 /61

Fun with functors | |||||

m Are we done with functors? (NO! The fun barely started:-)
m Category of categories - Cat

m Functors can be composed: if we have F': C'— D and G : D — F it is easy to define new
functor H:C — EasGo F
m We can always define an identity functor.

= Natural transformation defines a relation between functors. For F': C'— D and
G : C — D, the natural transformation « : F' = G is a family of morphisms (from D)
where:
m VX € obj(C), we pick a morphism ax : F(X) — G(X) in D (called the component of ax
at X.
BVf:X =Y €hom(C), ay o F(f) = G(f) o ax (naturality square or condition).

Marek Behalek (VSB-TUO) Monads in Haskell 32 /61

Fun with Functors

Fun with functors |l |||||

a F F(a) D

‘ F(h)
f
b)
b

G(b)

= Logical next step is: Category of functors [C, D] or D€

Objects obj(D®) are functors from C to D

Morphisms hom (DY) are natural transformations between those functors.

Identity idr : F' = F - maps each functor to itself.

Composition of «: F = G and §: G= H is (Boa): F = H, defined as composition of
morphisms in D:

(Boa)x : F(X)= H(X)=(Bx:G(X) = H(X))o (ax : F(X) — G(X) (so they obey
the associativity).

Marek Behalek (VSB-TUO) Monads in Haskell 33 /61

Fun with functors Il |||||

m If we use the same category, we get: Category of endofunctors C¢
m Haskell functors are in fact endofunctors on category of types and functions. What will be a
natural transformation? — Polymorphic function with type:
alpha :: F a ->G a -- for all a
m Note: Most such polymorphic functions are natural transformations.
m Note: We can not really change the value, just its computational context.

m Example
safeHead :: [a] -> Maybe a *Main> (safeHead . fmap (+1)) [1]
safeHead [] = Nothing Just 2
safeHead (x:xs) = Just x *Main> (fmap (+1) . safeHead) [1]

Just 2

m What about the naturality square — It is always satisfied! (Nice:-).
(alpha . fmap f) = (fmap f . alpha)

Marek Behalek (VSB-TUO) Monads in Haskell 34 /61

Monoidal Categories (1) |||||

m A product category C x D is a category where:
m objects are pairs: (A, B) where A € 0bj(C), B € obj(D)
m there is a morphisms (f, g) : (41, B1) — (A2, Ba) for all pairs of morphisms: f: A; — As
from C and g : By — By from D
m composition: (f2,92) o (f1,f2) = (f20 f1,92091)
m identity: 1(4,5) = (14,1B)
= A bifunctor is the mapping from a product category C' x D to category F, denoted:
F:CxD—FE
m Again in haskell it is implemented as p: C x C — C.

class Bifunctor p where
bimap :: (a -> b) -> (¢ -=>d) ->pac ->pbd
first :: (a ->b) ->pac->pbc
second :: (b ->c) ->pab->pac
m Good example is: Bifunctor Either or Bifunctor (,).

Marek Behalek (VSB-TUO) Monads in Haskell 35 /61

Monoidal Categories (2) |||||

= A monoidal category (C,®, 1) is a category C equipped with:
m a bifunctor ® : C' x C' — C called monoidal product or tensor product;
m an object T called (monoid, tensor) unit or identity object;
m moreover, it needs to be equipped with natural transformations to satisfy monoid laws:

B associator: ax,yv,z: (X ®Y)®Z=X® (Y ®Z), where X, Y, Z € 0bj(C)
m left unitor: A4 : I ® A = A and right unitor: pa: A®I= A

m Category theory gives us a new way, how to define a monoid. If we have a monoidal
category (C,®,I) then any M € obj(C') with two morphisms:
mp:M®M— M (multiplication)
mn: I — M (unit)
is a monoid.

m Hold that thought, we will use right after applicative...

Marek Behalek (VSB-TUO) Monads in Haskell 36 / 61

Applicative (1) |||||

m On our path to monads, we can continue with different types of monoidal functors, but
as programmers we have something more intuitive: Applicative functor.
m Informally, monoidal functors are functors between two monoidal categories that preserves

monoidal structure.
m Applicative functors are the programming equivalent of lax monoidal functors with tensorial

strength (if it means something:-).

m Applicative functors allow for functorial computations to be sequenced (unlike plain
functors), but don't allow using results from prior computations in the definition of
subsequent ones (unlike monads).

m Applicative functor is a functor with the ability to apply functor-wrapped functions with
functor-wrapped values. It is a functor with two
class Functor f => Applicative f where

pure :: a -> f a
-3 x (a->b) -> a-> b
-- fmap :: (a->b) >fa->fhb

(<¥>) :: f (a->b) >fa->fhb

Marek Behalek (VSB-TUO) Monads in Haskell 37 /61

Applicative (2) |||||

m Again, it must preserve some additional rules.
m Identity: pure id <*> v = v
m Composition: pure (.) <*> u <*> v <> y = u <*> (v <> w)
m Homomorphism: pure f <*> pure x = pure (f x)
m Interchange: u <*> pure y = pure ($ y) <*> u
m We can notice, that if we have a type from Applicative, we have also Functor
fmap f x = (pure f) <*> x
instance Applicative Maybe where
pure x = Just x
(Just £) <*> (Just x) = Just (f x)
_ <*> _ = Nothing
Main> (Just (+)) <> (Just 1) <*> (Just 2)
Just 3
*Main> (+) <$> (Just 1) <x> (Just 2)
Just 3

Marek Behalek (VSB-TUO) Monads in Haskell 38 / 61

T ——
Monads - Category Way (1) |||||

= We defined a monoidal category — but endofunctor in a endofunctor category can be
monoidal too.

m Such Monoid in the category of endofunctors is a monad.

m Formally, for category C', a monad F' is an endofunctor F' : C' — C' equipped with two
natural transformations:
= monoid multiplication ® or u: © : F(F') = F (for clarity denotated: F ® F = F) - for
each X € obj(C), ® maps F(F(X) — F(X);
m monoid unit 7, n : 1¢ = F, 1¢ is in fact identity functor, VX € C: 1¢(X) = X, so 5 is in
fact mapping: X — F(X).
m Moreover, it preserve following rules:
m Associativity preservation a: (FOF)O F=F©®(FOF)
m Left unit preservation A\:n® F = F
® Right unit preservation p: F = F @O n

m So, now is the moment when the theory should compose together and shine:-)

Marek Behalek (VSB-TUO) Monads in Haskell 39 /61

T ——
Monads - Category Way (2) |||||

Haskell type class Functor represents in fact endofunctors on category of Haskell types
and functions (H). We can define a category of endofunctors H'!.
In this category, objects are instances of Functor (for example F' and G) and morphisms
are natural transformations between then — they are polymorphic functions:
alpha :: Fa ->G a
If we want to make our category H a monoidal category, we need to introduce a tensor
product (HY x H") — HH and tensor unit (object from H*). One natural way to do
that, is to define:
m tensor product as composition of endofunctors: F o G (it is associative);
m tensor unit as identity endofunctor: Id.
B To define a monoid based H' on we need to pick an object - endofunctor 7" along with
two morphisms (natural transformations in H):
mu:T®T — T - function: join :: T (Ta) ->T a
m 7 :] — M (unit) - function return :: a -> T a
Finally, such endofunctor T is a monad! — It is a monoid in the category of

endofunctors.
Marek Behalek (VSB-TUO) Monads in Haskell 40 / 61

e
Monads - Programmers Way (1) |||||

New functions are produced like a composition of functions — important abstraction
mechanism. (.) :: (b ->¢c) -> (a ->b) ->a -> ¢

The ordering of functions does not matter, we can introduce:

>.>) :: (a->b) > (b ->c) >a->c

We want to have something similar to that for our Functor class. How the functions
from our examples looked liked?

eval :: Expr -> Maybe Int

compare :: Int -> Maybe Bool
m So, to be able to compose such functions, we need something like:
(>=>) :: Monad m => (a ->mb) -> (b ->mc) ->a->mc
m Consider, we have an operator >>= (bind): (>>=) :: ma -> (a ->mb) ->mb

m Then it is easy, operator >=> (Fish operator, Klesli category) can be defined as:

f O=>)g=\a->1letmb=1*fa
in mb >>= g

Marek Behalek (VSB-TUO) Monads in Haskell 41 / 61

SMemsds
Monads - Programmers Way (2) |||||

m OK, we have eliminated some unnecessary staff, but we still need:
(>>=) ::ma->(a->mb) ->m b, right?
m That is precisely how monads are defined in Haskell.
class Applicative f => Monad f where
>>=) :: fa->@->fb) >£fhb
return :: a -> f a
m Again, if we have Monad, we also have Functor and Applicative. The prove, is not
that obvious as before.
ma >>= (\x -> return (fab x)) -- (return.fab)

return a
mfab >>= (\ fab -> ma >>= (return . fab))

fmap fab ma
pure a
mfab <*> ma

Marek Behalek (VSB-TUO) Monads in Haskell 42 / 61

SMemsds
Monads - Programmers Way (3) |||||

m Alternatively, if we want to define >>= and we know that f is a Functor. Bind operator
can be defined:
(>>=) :: fa->@->fb) >fb
ma >>= f = join (fmap f ma)
-- in API: join :: Monad m => m (m a) -> m a
join :: m (ma) ->m a

m So, in theory a monad can be also defined by functions: join and return — Wait, that's
our 1 and n morphisms in monad definition. — That's precisely where we ended up
following the category theory!

= We can easily define =<< that just swaps the parameters of bind:

-- 3 o (a->b) => a-> b
-- fmap :: (a->b) ->fa->fhb
——(<x%>) :: f (a->b) >fa->fb
(=<<) :: Monadm=>(a->mb) ->ma->mb

f=<<x=x>>=f
Marek Behalek (VSB-TUO) Monads in Haskell 43 / 61

Programming with actions (1) |||||

m Now, we can chain actions better.

m We can even solve our original problem!

Marek Behalek (VSB-TUO) Monads in Haskell 44 / 61

Programming with actions (2) |||||

m Solving maybe expressions with monads.

eval ::

eval
eval
eval
eval

eval

Marek Behalek (VSB-TUO)

Expr -> Maybe Int
(Num x) = return x
(Div x y) = eval x >>= (\x' -> eval y >>= (\y' -> betterDiv x' y'))
(Add x y) = eval x >>= \x' -> eval y >>= \y' -> return (x'+ y')
(Mul x y) = eval x >>=
\x' -> eval y >>=
\y' -> return (x'* y')
(Sub x y) = do x' <- eval x

y' <- eval y
return (x'- y')

Monads in Haskell 45 / 61

Programming with actions / List Monad

List Monad (1)

= Nice example of a monad is the list.
Informally, required operations are

implemented:
myFmap :: (a -> b) -> [a] -> [b]
myFmap = map

myApply :: [a -> bl -> [a] -> [b]
myApply fs xs = [f x | £ <- fs, x <- xs]

myBind :: [a] -> (a -> [b]) -> [b]
myBind xs f = concat (map f xs)

m Now, we can observe, what we can do

Marek Behalek (VSB-TUO)

Monads in Haskell

with such defined operators.

*Main> (+1) <$> [1,2,3]

[2,3,4]

Main> (+) <$> [1,2,3] <> [1,2,3]

[2,3,4,3,4,5,4,5,6]

*Main> [1,2] >>= \n -> ['a','b']

>>= \ch -> [(n,ch)]

[(1,'a"),(1,'p'),(2,'a"),(2,'D")]

*Main> [3,4,5] >>= (return . (+1))
>>= (return . (*2))

[8,10,12]

46 / 61

Programming with actions / 10 Monad

IO Monad - just to remind you |||||

m In previous part, we have introduced a mechanism how actions can be chained — nicer
way how to write it.

m But we have started with the idea, that impure actions (manipulating with state) will be
solved with monads.

m We already know I0 Monad that solves input - output operations.
-- inputline :: String

getLine :: IO String
putStr :: String -> I0 ()

do x <- getLine
putStr x -- y <- putStr x, y == O

ready :: IO Bool
ready = do c <- getChar

return (c == 'y')

Marek Behalek (VSB-TUO) Monads in Haskell 47 / 61

State Monad (1) |||||

m How does it work? The idea is captured in more general monad that captures state.

m Lets first focuse on the idea — state manipulation can be captured like a function taking
original state and producing a pair (some value, new state).

type SimpleState s a = s -> (s, a)

retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)
= Now, lets create a simple input containing a list of integers (our state is just this list).
type ListInput a = SimpleState [Int] a

readInt :: ListInput Int
readInt statelList = (tail statelList, head statelList)

Marek Behalek (VSB-TUO) Monads in Haskell 48 / 61

State Monad (2) |||||

m Finally, lets try to make a function chaining actions (like >>=).

bind :: (s -> (s,a)) -- SimleState s a
-> (a -> (s -> (s, b))) -- a -> SimpleState s b
-> (s -> (s, b)) -- SimpleState s b
bind step makeStep oldState = -- Why 3 parameters?

let (newState, result) = step oldState
in (makeStep result) newState

m Finally, we can bind actions as with monads.

*Main> (readInt ~bind ™ \a->readInt “bind~ (\b->retSt (at+b))) [1,2,3]
([31,3)

m In our example, we have created a function defining what to do with the input. When it
is executed it bakes the result. If provided the same ingredients, it bakes the same result.

Marek Behalek (VSB-TUO) Monads in Haskell 49 / 61

State Monad (3) |||||

m What if we want to realy make it a part of Monad type class (it will not work for type

synonym)?
newtype State s a = State { runState :: s -> (s, a) }
readInt' :: State [Int] Int

readInt' = State {runState = \s->(tail s, head s)}

instance Functor (State s) where
fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)

instance Applicative (State s) where
pure a = State (\s->(s,a))
f <x> m = State $§ \s-> let (s',f')
(s'',a)
instance Monad (State s) where
return a = State (\s->(s,a))
m >>= k = State $§ \s -> let (s',a) = runState m s in runState (k a) s'

runState f s
runState m s' in (s'',f' a)

Marek Behalek (VSB-TUO) Monads in Haskell 50 / 61

State Monad (4) |||||

m We can even use do syntax now.
add :: State [Int] Int
add = do x<-readInt'
y<-readInt'
return (x+y)
m Examples, how to use this state monad:

*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
(31,3

*Main> runState add [1,2,3]

([31,3)

m Finally, assuming we have RealWorld, we ca define type 10 as:
type I0 a = State RealWorld a
--getChar :: RealWorld -> (RealWorld, Char)
--main :: RealWorld -> (RealWorld, ())

Marek Behalek (VSB-TUO) Monads in Haskell 51 / 61

Programming with actions / State Monads

Stacking Monads (1) |||||

= What if we want to use several monads — We want to use state and Maybe — monad
transformers (Control.Monad.Trans).

m For example, we will use wrapper:

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
instance Monad m => Monad (MaybeT m) where
return = MaybeT . return . Just
-- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
x >>= f = MaybeT $ do
maybe_value <- runMaybeT x
case maybe_value of
Nothing -> return Nothing
Just value -> runMaybeT $ f value

Marek Behalek (VSB-TUO) Monads in Haskell 52 / 61

Stacking Monads (2) |||||

m For practical purposes, we need lift function - it promotes base monad computations to
combined monad.

m It is similar to 1iftM :: Monad m => (a -> b) -> (m a -> m b) method for combined
monad.

m For example, we will use wrapper:

class MonadTrans t where
1lift :: (Monad m) => ma -> t m a

instance MonadTrans MaybeT where
1ift = MaybeT . (1iftM Just)

Marek Behalek (VSB-TUO) Monads in Haskell 53 / 61

Stacking Monads (3) |||||

m Example:
import Control.Monad.Trans.Maybe
import Control.Monad.IO0.Class (1iftI0)
import Text.Read

data Person = Person {name::String, age::Int} deriving Show

askPersonT :: MaybeT IO Person

askPersonT = do
name <- 1iftI0 $ putStr "Name? " >> getLine
age <- MaybeT $ fmap readMaybe $ putStr "Age? " >> getLine
return $§ Person name age

doIt = do result <-runMaybeT askPersonT
print result

Marek Behalek (VSB-TUO) Monads in Haskell 54 / 61

Arrays in Haskell |||||

m Like in other languages Haskell has arrays.
m Arrays (where we can get i element in O(1)) are best choice for some algorithms.
m Boxed (non-strict) arrays support lazy evaluation.
m Unboxed (strict) - just values, only basic types, closer to memory block.
m Arrays are in package array.
Immutable 10 monad \ ST monad
‘ instance IArray a e ‘ instance MArray a e I0 ‘ instance MArray a e ST
Boxed Array I0Array STArray
DiffArray
Unboxed UArray I0UArray STUArray
DiffUArray StorableArray

Table: Comparison of an different arrays in Haskell

Marek Behalek (VSB-TUO) Monads in Haskell 55 / 61

Immutable Array (1) |||||

® Immutable arrays are in modules: Data.Array or Data.Array.IArray

m All these arrays use the same indexing.
class (Ord a) => Ix a where

range i1 (a,a) -> [a]
index :: (a,a) a -> Int
inRange :: (a,a) -> a -> Bool

m Then (based on imported array type), we create an array:
array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray :: Ix i => (i, i) -> [e] -> Array i e

squares = array (1,100) [(i, i*i) | i <- [1..100]]
listToArray = listArray (0,5) [8,4,9,6,7,1]

Marek Behalek (VSB-TUO) Monads in Haskell 56 / 61

Immutable Array (2) |||||

m Accessing arrays (works also for IArray):

(1) :: (Array a e, Ix i) =>aie->1->e
bounds :: (Array a e, Ix i) => a i e -> (i, 1)
indices :: (Array a e, Ix i) => a i e -> [i]
elems :: (Array a e, Ix i) => a i e -> [e]

m Incremental array updates (works also for TArray):
(//) :: (Array a e, Ix i) => a i e -> [(i, e)] > aie

ghci> listArray (0,5) [8,4,9,6,7,11 // [(1,0),(2,0)]
array (0,5) [(0,8),(1,0),(2,0),(3,6),(4,7),(5,1)]

m Derived arrays (amap requires IArray):
amap :: (IArray a e', IArray a e, Ix i) => (e'->e) ->aie' ->aie
ixmap :: (Array a e, Ix i, Ix j) => (i, 1) -> (i->j) ->a je ->a i e

Marek Behalek (VSB-TUO) Monads in Haskell 57 / 61

Mutable Array (1) |||||

m Class of mutable array types:
class Monad m => MArray a em ... --array: (a i e), index: Ix i
m We need a monad to preserve a state: ST s or I0.
m Constructing mutable arrays:
newArray :: (MArray a em, Ix i) => (i, i) -> e ->m (a i e)
newListArray :: (MArray a e m, Ix i) => (i, i) -> [e] -> m (a i e)
m Reading and writing mutable arrays:
readArray :: (MArray a em, Ix i) =>aie ->1i ->me
writeArray :: (MArray a em, Ix i) =>a i e ->1 ->e ->m ()
m Derived arrays
mapArray:: (MArray a e' m,MArray a e m, Ix i)=>(e'->e)-> a i e'->m (a i e)
mapIndices:: (MArray a e m,Ix i,Ix j)=>(i, i)->(i->j)->a j e->m (a i e)

Marek Behalek (VSB-TUO) Monads in Haskell 58 / 61

Mutable Array (2) |||||

m Deconstructing mutable arrays:

getBounds :: (MArray a em, Ix i) => a i e ->m (i, i)
getElems :: (MArray a em, Ix i) => a i e -> m [e]
getAssocs :: (MArray a em, Ix i) => a i e ->m [(i, e)]
m Conversions between mutable and immutable arrays:
freeze :: (Ix i, MArray a e m, IArray be) =>aie ->m (b ie)
thaw :: (Ix i, TArray a e, MArray bem) => a i e ->m (b i e)

m Let's use monad ST to preserve the state.

m Now, we have: data STArray s i e, it will be an instance of
MArray (STArray s) e (ST s)

m Safe way to create and work with mutable array:
runSTArray :: (forall s. ST s (STArray s i e)) -> Array i e
It will return immutable array at the end (it will thaw the original array).

Marek Behalek (VSB-TUO) Monads in Haskell 59 / 61

Mutable Array (3) |||||

m Example how to use mutable array:
modify :: Array Int Int -> Array Int Int
modify inputArray = runSTArray $ do
let end = (snd . bounds) inputArray
stArray <- thaw inputArray
forM_ [1 .. end] $ \i -> do
val <- readArray stArray i
when (val<0) $ do
writeArray stArray i 0
return stArray

ghci> modify $ listArray (0,3) [8,-4,-9,1]
array (0,3) [(0,8),(1,0),(2,0),(3,1)]

Marek Behalek (VSB-TUO) Monads in Haskell 60 / 61

Conclusion |||||

m In Haskell, monads are a sort of functional envelop for in-pure functions.
m Functions like bind, join or fmap allows us to work with these monads.

m On the first sight, we can recognize a function working with input/output — it will have 10
in the type definition.
m We can use the same design patterns for all monads.

m Strictly speaking, we can forget all about the theory and just use do if it is a monad.

Marek Behalek (VSB-TUO) Monads in Haskell 61 / 61

Thank you for your attention

Marek Bé&halek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL
|| || UNIVERSITY | ENGINEERING AND COMPUTER
| OF OSTRAVA | SCIENCE

	Motivation
	Functions with No Side Effects
	IO Monad - practical approach
	Category Theory
	Monoid
	Functor
	Fun with Functors
	Monoidal Categories
	Applicative
	Monads
	Programming with actions
	List Monad
	IO Monad
	State Monads

	Arrays in Haskell
	Conclusion
	

