
www.vsb.cz

Monads in Haskell
behalek.cs.vsb.cz/wiki/Practical_Functional_Programming

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

1 Motivation
2 Functions with No Side Effects
3 IO Monad - practical approach
4 Category Theory
5 Monoid
6 Functor
7 Fun with Functors
8 Monoidal Categories

9 Applicative
10 Monads
11 Programming with actions

List Monad
IO Monad
State Monads

12 Arrays in Haskell
13 Conclusion

Marek Běhálek (VSB-TUO) Monads in Haskell 1 / 61

Motivation

Functional programming I

Declarative style of programming
We define what needs to be computed, a run-time environment responsibility is how it will
be evaluated.
Similar to math, we have various rules how to simplify an expression, but there are different
ways how these rules can be applied for given expression.

Programming with expressions (no statements)
Functional program is a set of function’s definitions.
Functions are first class citizens - a function can return a function, high-order functions,
partially evaluated functions.
Program’s evaluation is the evaluation of some main expression.

Immutable data structures - once created data can not be changed.
Studied problem, plenty of possibilities.
Common in API of many languages (C#: string, DateTime,
https://www.nuget.org/packages/System.Collections.Immutable/).
Sometimes they are called persistent data structures.

Marek Běhálek (VSB-TUO) Monads in Haskell 2 / 61

https://www.nuget.org/packages/System.Collections.Immutable/

Motivation

Functional programming II

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_array

What if I really need mutable data structure?
For example quick implementation of quicksort?

No side effects
Functions only return values, no changes other changes.
For the same parameters, we always get the same result (referential transparency).
But, sometimes side effects can not be avoided (input - output operations) - how to solve
that?

Marek Běhálek (VSB-TUO) Monads in Haskell 3 / 61

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_array

Functions with No Side Effects

Functions with No Side Effects (1)

What are side effects, how do i recognise them?
public double Add(double a, double b) {

return a + b;
}
public double Add2(double a, double b) {

try {
Console.WriteLine($"a={a}, b={b}");

} catch (Exception ex) { }
return a + b;

}
public int Divide(int a, int b) {

return a / b;
}

Marek Běhálek (VSB-TUO) Monads in Haskell 4 / 61

Functions with No Side Effects

Functions with No Side Effects (2)

How can I avoid them?
public int? Divide2(int a, int b) {

if (b == 0)
return null;

return a / b;
}

public int Divide3(int a, NonZeroInteger b) {
return a / b.Number;

}

public class NonZeroInteger {
public int Number { get; }

public NonZeroInteger(int number) {
Number = number;
if (number == 0)

throw new ArgumentException();
}

}

Marek Běhálek (VSB-TUO) Monads in Haskell 5 / 61

Functions with No Side Effects

Expressions (1)

Lets start with data type Maybe
data Maybe a = Nothing | Just a

betterDiv :: Int -> Int -> Maybe Int
betterDiv x y | y==0 = Nothing

| otherwise = Just (x `div` y)

Now we want to compute some expressions where we use it like a value type.
data Expr = Num Int

| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

Marek Běhálek (VSB-TUO) Monads in Haskell 6 / 61

Functions with No Side Effects

Expressions (2)

Now we need to compute such expression
eval :: Expr -> Maybe Int
eval (Num x) = Just x
eval (Div x y) = case eval x of

Nothing -> Nothing
Just x' -> case eval y of

Nothing -> Nothing
Just y' -> betterDiv x' y'

eval (Add x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of

Nothing -> Nothing
Just y' -> Just (x' + y')

We can see emerging patter, how actions are linked one after the other.
Marek Běhálek (VSB-TUO) Monads in Haskell 7 / 61

Functions with No Side Effects

Logging (1)

Lets have simple operations.
compute :: Int -> Int
compute x = x * x

isItEnough :: Int -> Bool
isItEnough x = x > 9

We want then to compute values and log the context.
compute :: (Int, String) -> (Int, String)
compute (x, log) = (x * x, log ++ "Just square of x.")

isItEnough :: (Int, String) -> (Bool, String)
isItEnough (x, log) = (x > 9, log ++ "Compared to 9.")

It this a good solution? How to improve the quality of our solution?

Marek Běhálek (VSB-TUO) Monads in Haskell 8 / 61

Functions with No Side Effects

Logging (2)

What if I want to add the new entry at the start of log?
compute :: Int -> (Int, String)
compute x = (x * x, "Just square of x.")

isItEnough :: Int -> (Bool, String)
isItEnough x = (x > 9, "Compared to 9.")

applyLog :: (a,String) -> (a -> (b,String)) -> (b,String)
applyLog (x,log) f = let (y,newLog) = f x in (y,log ++ newLog)

*Main> applyLog (applyLog (2,"Initial value 2.") compute) isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

*Main> (2,"Initial value 2.") `applyLog` compute `applyLog` isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

Is this the end? Can it be improved even further?
Marek Běhálek (VSB-TUO) Monads in Haskell 9 / 61

Functions with No Side Effects

Monads - what a strange word.

What if they can not be avoided?
For example input - output operations?
inputInt :: Int

inputDiff = inputInt - inputInt

funny :: Int-> Int
funny n = inputInt + n

Haskell uses programming with actions
to solve this issue.
Theoretically, we use thinks like Functor,

Applicative or Monad that comes from
the category theory.

For orthodox programmer, it is just
some theory gibberish, for the others, it
may provide interesting insight to the
problem.

Informally, a sort of pure functional
envelop for non-pure actions.
Practically, its a set of design patterns
solving plenty of situations that are
frequently occurring in practice.

Marek Běhálek (VSB-TUO) Monads in Haskell 10 / 61

IO Monad - practical approach

IO Monad (1)

This part is for programmers, that do not care about a theory.
There is a special type () with only value () called unit type - representing a sort of
dummy value.
All input and output actions can be recognized by having IO in their type definition.

Input: getLine :: IO String
Output: putStr :: String -> IO ()
Usually, when we are talking about monads, we say, that they represents some sort of
containers → better intuition for IO is: bake :: Recipe Cake.

You can glue these actions by syntax construct: do.
How to get value from/to IO?

There is a syntactic construct in do (called bind): x <- action, where if
action :: IO a, then the type of variable x is a.
There is a function return :: a -> IO a, it can be used to put a common value into IO.

Finally, the function main has a type: main :: IO a
And that is all, Is it clear?

Marek Běhálek (VSB-TUO) Monads in Haskell 11 / 61

IO Monad - practical approach

IO Monad (2)

Simple example:
main = do

putStrLn "Hello, what's your name?"
name <- getLine
let bigName = map toUpper name
putStrLn ("Hey " ++ bigName ++ ", you rock!")

Now, we can compile it and execute.

PS C:\> ghc .\test.hs
[1 of 1] Compiling Main (test.hs, test.o)
Linking test.exe ...
PS C:\> .\test.exe
Hello, what's your name?
Marek
Hey MAREK, you rock!

Marek Běhálek (VSB-TUO) Monads in Haskell 12 / 61

IO Monad - practical approach

IO Monad (3)

The construct do is just an expression, we can use it in the same way...
main = do

line <- getLine
if null line

then return ()
else do

print $ reverseWords line
main

reverseWords :: String -> String
reverseWords = unwords . map reverse . words

You should notice, that return does not end the function like in common languages.
main = do

a <- return "hell"
b <- return "yeah!"
putStrLn $ a ++ " " ++ b

Marek Běhálek (VSB-TUO) Monads in Haskell 13 / 61

IO Monad - practical approach

IO Monad (4)

Interesting question, can we use high order functions with monad IO?
mySequence :: [IO a] -> IO [a]
mySequence [] = return []
mySequence (ma:mas) = do

a <- ma
as <- sequence mas
return (a:as)

ghci> mySequence [getLine, getLine, getLine]
a
b
c
["a","b","c"]

Plenty of functions in: Control.Monad.

Marek Běhálek (VSB-TUO) Monads in Haskell 14 / 61

IO Monad - practical approach

IO Monad (5)

For example forM (this is as close to for cycle as you can get in Haskell :-)
import Control.Monad

main = do
lines <- forM [1,2,3] (\a -> do

putStrLn $ "Give me " ++ show a ++ " line."
getLine)

print lines

Give me 1 line.
Hello
Give me 2 line.
Haskell
Give me 3 line.
programmers
["Hello","Haskell","programmers"]

Marek Běhálek (VSB-TUO) Monads in Haskell 15 / 61

IO Monad - practical approach

IO Monad (6)

We can use IO monad for working with files.
For example we can start with: openFile :: FilePath -> IOMode -> IO Handle
import System.IO

main = do
handle <- openFile "test.hs" ReadMode
contents <- hGetContents handle
putStr contents
hClose handle

But, there are plenty of other functions:
withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO (), also appendFile

Marek Běhálek (VSB-TUO) Monads in Haskell 16 / 61

IO Monad - practical approach

IO Monad (7)

Haskell also have exceptions → high order function:
catch :: Exception e => IO a -> (e -> IO a) -> IO a
import System.IO
import System.IO.Error

main = toTry `catch` handler

toTry :: IO ()
toTry = do contents <- readFile "test.txt"

putStrLn $ "Lines: " ++ show (length (lines contents))

handler :: IOError -> IO ()
handler e = putStrLn "Whoops, had some trouble!"

Functions like isDoesNotExistError or isFullError to distinguish between exception.
Marek Běhálek (VSB-TUO) Monads in Haskell 17 / 61

IO Monad - practical approach

IO Monad (8)

System.Environment - for example, for handling command line arguments:
getArgs :: IO [String].
System.Random - also random numbers are part of monad IO, but here it is complicated.

We need to install package random: stack ghci --package random
Now we have:
random :: (RandomGen g, Random a) => g -> (a, g)
randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)

ghci> random (mkStdGen 1) :: (Bool, StdGen)
(True,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})
ghci> randomR (1,6) (mkStdGen 1)
(6,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})

IO have also one random generator (getStdGen) stored inside → we can use functions:
randomIO, randomRIO.
Be warned. All REAL programmers should stop reading NOW. We will continue with the
theory behind monads so we can outgrowth the IO monad

Marek Běhálek (VSB-TUO) Monads in Haskell 18 / 61

Category Theory

Category Theory - why to study? We are programmers!

Programming is based on math.
What kind of math? → geometry, algebra, topology, set theory, type theory, ...

There are different kinds of mathematics → even if developed independently, they share
some ideas (for example Curry–Howard correspondence) → Category theory reveals
how different kinds of structures are related to one another.

Category theory is a toolset for describing the general abstract structures in mathematics.
Category theory is very well suited for programmers → things we normally do overlap
with problems category theory is studying.

It deals with structure, omitting particulars (abstraction).
In its roots, it study composition → holy grail of programming (bigger blocks are composed
from components) → composition is crucial in many programming paradigms.

Haskell have been tapping category theory for a long time, but the ideas can be used also
in other languages.

Marek Běhálek (VSB-TUO) Monads in Haskell 19 / 61

Category Theory

Category Theory - Basics (1)

Category C is algebraic structure consisting of:
collection of objects - obj(C)
arrows (or morphisms or maps) - hom(C)

f : a → b - f is a morphism from a to b.
hom(a, b) - hom-set - denotes a set of morphisms from a to b.

Also, we have a binary operation ◦ called composition of morphisms.
For any three objects a, b and c: ◦ : hom(b, c)× hom(a, b) → hom(a, c).
For any pair of f : a → b and g : b → c there exists a composition (composite morphism)
written as g ◦ f : a → c.

Identity : For every object x, there exists a morphism 1x : x → x called the identity
morphism for x, such that for every morphism f : a → b, we have 1b ◦ f = f = f ◦ 1a.
Associativity : If f : a → b, g : b → c and h : c → d then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Marek Běhálek (VSB-TUO) Monads in Haskell 20 / 61

Category Theory

Category Theory - Basics (2)

a b c

f

g

g . f

id

h

a a
id_a id_b

f

g

Figure: Are these schematics for categories?

Usually, a schematics for a category is a

multigraph where objects are verticies,
and morphisms are oriented edges.
When we are talking about categories in
programming, most common example
are types and functions.

For example our figure depicts
functions:

f :: a -> b
g :: b -> c

Function g ◦ f can be defined as:

gf :: a -> c
gf = \x -> g (f x)

Marek Běhálek (VSB-TUO) Monads in Haskell 21 / 61

Monoid

Category Theory - Monoid

Important algebraic structure in category theory is monoid.
Part of set theory, used even before the whole category theory thing → we already know
this term from set theory → what is their relation?

A set S with ∗ : S × S → S (multiplication) is a monoid M if it satisfies:
Associativity : For all a, b and c in S, the equation (a ∗ b) ∗ c = a ∗ (b ∗ c) holds.
Unit element: There exists an element e (unit) in S such that for every element a in S, the
equalities e ∗ a = a and a ∗ e = a hold.

An individual monoid (M, ∗, e) can be a category C where:
the collection of objects obj(C) is single object - M ;
the collection of morphisms hom(C) is set M itself, which mean, each element in set M is
a morphism in category C;
the composition operation ◦ of C is ∗ - since each morphism in C is element in M , the
composition of morphisms is just the multiplication of elements;
the identity morphism of C is unit element e

In this way, since M ,∗ and e satisfies the monoid laws, apparently the category laws are
satisfied.

Marek Běhálek (VSB-TUO) Monads in Haskell 22 / 61

Monoid

Monoid in Haskell (1)

Stop this theory gibberish, what it has to
do with mentioned practical examples?
Let’s define monoid in Haskell.
-- Data.Monoid
-- class Semigroup a => Monoid a where
class Monoid m where

mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty

What about the rules for monoid?

mempty `mappend` x = x
x `mappend` mempty = x
(x `mappend` y) `mappend` z

= x `mappend` (y `mappend` z)

(This is embarrassing.) Haskell can not
enforce them, programmer is kindly
asked to obey them.

Marek Běhálek (VSB-TUO) Monads in Haskell 23 / 61

Monoid

Monoid in Haskell (2)

Plenty of types are instances of Monoid.
instance Monoid [a] where

mempty = []
mappend = (++)

All, Any, First, Last, Maybe, Ordering, IO, Sum, Product, ...

Do you remember our logging example? We can modify our logging function like this:
applyLog :: (Monoid m) => (a,m) -> (a -> (b,m)) -> (b,m)
applyLog (x,log) f = let (y,newLog) = f x in (y,log `mappend` newLog)

*Main> (2,"Initial value 2.") `applyLog` compute `applyLog` isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

The result is the same, but now... (wait for it:-)

Marek Běhálek (VSB-TUO) Monads in Haskell 24 / 61

Monoid

Monoid in Haskell (3)

We can use the same function applyLog with all types that are instances of Monoid.
Let’s say, we want to log just some events.
addMore :: Int -> (Int, Maybe String)
addMore x

| x == 2 = (x+1, Just "Nice.")
| x == 1 = (x+1, Just "More!")
| otherwise = (x+1, Nothing)

*Main> (1,Nothing) `applyLog` addMore `applyLog` addMore `applyLog` addMore
(4,Just "More!Nice.")

Is it better then before? We all agree that it is. Right ?!?

Marek Běhálek (VSB-TUO) Monads in Haskell 25 / 61

Functor

Functor (1)

Motivation
Our original goal was to find some nice (design) patterns for frequently occurring problems.
Lets say, we found one, what next? → prepare abstract solution capturing the idea → apply
it to solve other problems.
In terms of categories, this abstraction is captured by a category and we need to transfer it
to other categories.

Functor is a mapping between categories that preserve a structure → it preserve identity
morphisms and composition of morphisms.
Let C and D be categories. A functor F from C to D is a mapping (function) that:

associates each x in obj(C) to an object F (X) in obj(D),
associates each morphism f : X → Y in C to a morphism F (f) : F (X) → F (Y) in D such
that the following two conditions hold:

F (idx) = idF (x) for every x in obj(C),
F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in C

Marek Běhálek (VSB-TUO) Monads in Haskell 26 / 61

Functor

Functor (2)

But how to implement functors in Haskell?

Lets say, we just want to add Maybe for
capturing errors → We want to map our
structure to Maybe category → We need
a functor.
First, we need to map objects (types) →
type constructor Maybe
Second, we need to map morphisms
(functions):
fmap :: (a->b) -> (Maybe a -> Maybe b)
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

a

b

Maybe a

Maybe b

f
Maybe

fmap f

Marek Běhálek (VSB-TUO) Monads in Haskell 27 / 61

Functor

Functor (3)

Let’s try to generalize this approach. We
introduce new type class: Functor
-- (* -> *) -> Constraint
class Functor f where

-- $:: (a -> b) -> a -> b
fmap :: (a -> b) -> f a -> f b

What is f in the definition? → A type
constructor with kind * -> * and a
method fmap.

Kind in haskel is a type of the type.

*Main> :kind Int
Int :: *
*Main> :kind Maybe
Maybe :: * -> *

Note, the result is similar to operator $,
we can even use it in the same way.

There is even an operator: <$> = fmap

Marek Běhálek (VSB-TUO) Monads in Haskell 28 / 61

Functor

Functor (4)

So, we can do:

*Main> (+1) $ (*2) $ (+3) $ 1 --looks good, but it's cheating...
9
*Main> (+1) `fmap` ((*2) `fmap` ((+3) `fmap` (Just 1)))
Just 9
*Main> (+1) <$> (*2) <$> (+3) <$> (Just 1) -- fmap on ->
Just 9

What about operations like +?

*Main> (+) <$> (Just 1) -- Maybe (Int -> Int)

Again, plenty of types are instances of Functor.
List [] here: fmap = map
->, First, Last, Sum, Product, Min, Max, Identity, IO, ST a, Array i,...

Marek Běhálek (VSB-TUO) Monads in Haskell 29 / 61

Functor

Functor (5)

What about Either a b, can it be a functor?
-- * -> * -> *
data Either a b = Left a

| Right b

Not really, but Either a is OK!
instance Functor (Either a) where

fmap _ (Left x) = Left x
fmap f (Right y) = Right (f y)

When we are defining a function, we are using ->. What is it? Can it be a functor? How
to define fmap then?

Marek Běhálek (VSB-TUO) Monads in Haskell 30 / 61

Functor

Functor (6)

Is that all? What about the rules from the functor definition?
fmap id == id -- Identity
fmap (f . g) == fmap f . fmap g -- Composition
Again, programmer is kindly asked to obey them.
It does not obey mentioned rules, but it will work.
data CMaybe a = CNothing | CJust Int a

instance Functor CMaybe where
fmap f CNothing = CNothing
fmap f (CJust counter x) = CJust (counter+1) (f x)

Endofunctor is a functor where the source and the target category is the same.
Strictly speaking, the Functor class represents endofunctors on the category of Haskell
types and functions.
Endofunctors are interesting because they do a good job of representing structures inside
categories that work for any object.

Marek Běhálek (VSB-TUO) Monads in Haskell 31 / 61

Fun with Functors

Fun with functors I

Are we done with functors? (NO! The fun barely started:-)
Category of categories - Cat

Functors can be composed: if we have F : C → D and G : D → E it is easy to define new
functor H : C → E as G ◦ F
We can always define an identity functor.

Natural transformation defines a relation between functors. For F : C → D and
G : C → D, the natural transformation α : F ⇒ G is a family of morphisms (from D)
where:

∀X ∈ obj(C), we pick a morphism αX : F (X) → G(X) in D (called the component of αX

at X.
∀f : X → Y ∈ hom(C), αY ◦ F (f) = G(f) ◦ αX (naturality square or condition).

Marek Běhálek (VSB-TUO) Monads in Haskell 32 / 61

Fun with Functors

Fun with functors II

f

a

b

F(a)

G(a)
F(b)

G(b)

F

F

G

G F(f)

G(f)

C D

Logical next step is: Category of functors [C,D] or DC

Objects obj(DC) are functors from C to D
Morphisms hom(DC) are natural transformations between those functors.
Identity idF : F ⇒ F - maps each functor to itself.
Composition of α : F ⇒ G and β : G ⇒ H is (β ◦ α) : F ⇒ H, defined as composition of
morphisms in D:
(β ◦ α)X : F (X) ⇒ H(X) = (βX : G(X) → H(X)) ◦ (αX : F (X) → G(X) (so they obey
the associativity).

Marek Běhálek (VSB-TUO) Monads in Haskell 33 / 61

Fun with Functors

Fun with functors III

If we use the same category, we get: Category of endofunctors CC

Haskell functors are in fact endofunctors on category of types and functions. What will be a
natural transformation? → Polymorphic function with type:
alpha :: F a -> G a -- for all a
Note: Most such polymorphic functions are natural transformations.
Note: We can not really change the value, just its computational context.

Example

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x

*Main> (safeHead . fmap (+1)) [1]
Just 2
*Main> (fmap (+1) . safeHead) [1]
Just 2

What about the naturality square → It is always satisfied! (Nice:-).
(alpha . fmap f) = (fmap f . alpha)

Marek Běhálek (VSB-TUO) Monads in Haskell 34 / 61

Monoidal Categories

Monoidal Categories (1)

A product category C ×D is a category where:
objects are pairs: (A,B) where A ∈ obj(C), B ∈ obj(D)
there is a morphisms (f, g) : (A1, B1) → (A2, B2) for all pairs of morphisms: f : A1 → A2

from C and g : B1 → B2 from D
composition: (f2, g2) ◦ (f1, f2) = (f2 ◦ f1, g2 ◦ g1)
identity: 1(A,B) = (1A, 1B)

A bifunctor is the mapping from a product category C ×D to category E, denoted:
F : C ×D → E.

Again in haskell it is implemented as p : C × C → C.
class Bifunctor p where

bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
first :: (a -> b) -> p a c -> p b c
second :: (b -> c) -> p a b -> p a c

Good example is: Bifunctor Either or Bifunctor (,).

Marek Běhálek (VSB-TUO) Monads in Haskell 35 / 61

Monoidal Categories

Monoidal Categories (2)

A monoidal category (C,⊗, I) is a category C equipped with:
a bifunctor ⊗ : C × C → C called monoidal product or tensor product;
an object I called (monoid, tensor) unit or identity object;
moreover, it needs to be equipped with natural transformations to satisfy monoid laws:

associator: αX,Y,Z : (X ⊗ Y)⊗ Z ⇒ X ⊗ (Y ⊗ Z), where X,Y, Z ∈ obj(C)
left unitor: λA : I ⊗A ⇒ A and right unitor: ρA : A⊗ I ⇒ A

Category theory gives us a new way, how to define a monoid. If we have a monoidal
category (C,⊗, I) then any M ∈ obj(C) with two morphisms:

µ : M ⊗M → M (multiplication)
η : I → M (unit)

is a monoid.
Hold that thought, we will use right after applicative...

Marek Běhálek (VSB-TUO) Monads in Haskell 36 / 61

Applicative

Applicative (1)

On our path to monads, we can continue with different types of monoidal functors, but
as programmers we have something more intuitive: Applicative functor.

Informally, monoidal functors are functors between two monoidal categories that preserves
monoidal structure.
Applicative functors are the programming equivalent of lax monoidal functors with tensorial
strength (if it means something:-).
Applicative functors allow for functorial computations to be sequenced (unlike plain
functors), but don’t allow using results from prior computations in the definition of
subsequent ones (unlike monads).

Applicative functor is a functor with the ability to apply functor-wrapped functions with
functor-wrapped values. It is a functor with two
class Functor f => Applicative f where

pure :: a -> f a
-- $:: (a -> b) -> a -> b
-- fmap :: (a -> b) -> f a -> f b

(<*>) :: f (a -> b) -> f a -> f b
Marek Běhálek (VSB-TUO) Monads in Haskell 37 / 61

Applicative

Applicative (2)

Again, it must preserve some additional rules.
Identity : pure id <*> v = v
Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Homomorphism: pure f <*> pure x = pure (f x)
Interchange: u <*> pure y = pure ($ y) <*> u

We can notice, that if we have a type from Applicative, we have also Functor
fmap f x = (pure f) <*> x
instance Applicative Maybe where

pure x = Just x
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

Main> (Just (+)) <> (Just 1) <*> (Just 2)
Just 3
Main> (+) <$> (Just 1) <> (Just 2)
Just 3

Marek Běhálek (VSB-TUO) Monads in Haskell 38 / 61

Monads

Monads - Category Way (1)

We defined a monoidal category → but endofunctor in a endofunctor category can be
monoidal too.

Such Monoid in the category of endofunctors is a monad.
Formally, for category C, a monad F is an endofunctor F : C → C equipped with two
natural transformations:

monoid multiplication ⊙ or µ: ⊙ : F (F) ⇒ F (for clarity denotated: F ⊙ F ⇒ F) - for
each X ∈ obj(C), ⊙ maps F (F (X) → F (X);
monoid unit η, η : 1C ⇒ F , 1C is in fact identity functor, ∀X ∈ C : 1C(X) = X, so η is in
fact mapping: X → F (X).
Moreover, it preserve following rules:

Associativity preservation α : (F ⊙ F)⊙ F ≡ F ⊙ (F ⊙ F)
Left unit preservation λ : η ⊙ F ≡ F
Right unit preservation ρ : F ≡ F ⊙ η

So, now is the moment when the theory should compose together and shine:-)

Marek Běhálek (VSB-TUO) Monads in Haskell 39 / 61

Monads

Monads - Category Way (2)

1 Haskell type class Functor represents in fact endofunctors on category of Haskell types
and functions (H). We can define a category of endofunctors HH .

2 In this category, objects are instances of Functor (for example F and G) and morphisms
are natural transformations between then → they are polymorphic functions:
alpha :: F a -> G a

3 If we want to make our category HH a monoidal category, we need to introduce a tensor
product (HH ×HH) → HH and tensor unit (object from HH). One natural way to do
that, is to define:

tensor product as composition of endofunctors: F ◦G (it is associative);
tensor unit as identity endofunctor: Id.

4 To define a monoid based HH on we need to pick an object - endofunctor T along with
two morphisms (natural transformations in H):

µ : T ⊗ T → T - function: join :: T (T a) -> T a
η : I → M (unit) - function return :: a -> T a

5 Finally, such endofunctor T is a monad! → It is a monoid in the category of
endofunctors.

Marek Běhálek (VSB-TUO) Monads in Haskell 40 / 61

Monads

Monads - Programmers Way (1)

New functions are produced like a composition of functions → important abstraction
mechanism. (.) :: (b -> c) -> (a -> b) -> a -> c
The ordering of functions does not matter, we can introduce:
(>.>) :: (a -> b) -> (b -> c) -> a -> c
We want to have something similar to that for our Functor class. How the functions
from our examples looked liked?
eval :: Expr -> Maybe Int
compare :: Int -> Maybe Bool
So, to be able to compose such functions, we need something like:
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
Consider, we have an operator >>= (bind): (>>=) :: m a -> (a -> m b) -> m b
Then it is easy, operator >=> (Fish operator, Klesli category) can be defined as:
f (>=>) g = \ a -> let mb = f a

in mb >>= g
Marek Běhálek (VSB-TUO) Monads in Haskell 41 / 61

Monads

Monads - Programmers Way (2)

OK, we have eliminated some unnecessary staff, but we still need:
(>>=) :: m a -> (a -> m b) -> m b, right?
That is precisely how monads are defined in Haskell.
class Applicative f => Monad f where

(>>=) :: f a -> (a -> f b) -> f b
return :: a -> f a

Again, if we have Monad, we also have Functor and Applicative. The prove, is not
that obvious as before.
fmap fab ma = ma >>= (\x -> return (fab x)) -- (return.fab)
pure a = return a
mfab <*> ma = mfab >>= (\ fab -> ma >>= (return . fab))

Marek Běhálek (VSB-TUO) Monads in Haskell 42 / 61

Monads

Monads - Programmers Way (3)

Alternatively, if we want to define >>= and we know that f is a Functor. Bind operator
can be defined:
(>>=) :: f a -> (a -> f b) -> f b
ma >>= f = join (fmap f ma)
-- in API: join :: Monad m => m (m a) -> m a
join :: m (m a) -> m a
So, in theory a monad can be also defined by functions: join and return → Wait, that’s
our µ and η morphisms in monad definition. → That’s precisely where we ended up
following the category theory!
We can easily define =<< that just swaps the parameters of bind:
-- $:: (a -> b) -> a -> b
-- fmap :: (a -> b) -> f a -> f b
--(<*>) :: f (a -> b) -> f a -> f b
(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f

Marek Běhálek (VSB-TUO) Monads in Haskell 43 / 61

Programming with actions

Programming with actions (1)

Now, we can chain actions better.

*Main> (Just 1) >>= (\x-> return (x+1))
Just 2
*Main> (Just (+)) >>= (\y -> Just (y 1 2)) >>= (\x -> return (x+1))
Just 4
*Main> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Just "3!"
*Main> Just 3 >>= \x -> Just "!" >>= \y -> Just (show x ++ y)
Just "3!"

We can even solve our original problem!

Marek Běhálek (VSB-TUO) Monads in Haskell 44 / 61

Programming with actions

Programming with actions (2)

Solving maybe expressions with monads.
eval :: Expr -> Maybe Int
eval (Num x) = return x
eval (Div x y) = eval x >>= (\x' -> eval y >>= (\y' -> betterDiv x' y'))
eval (Add x y) = eval x >>= \x' -> eval y >>= \y' -> return (x'+ y')
eval (Mul x y) = eval x >>=

\x' -> eval y >>=
\y' -> return (x'* y')

eval (Sub x y) = do x' <- eval x
y' <- eval y
return (x'- y')

Marek Běhálek (VSB-TUO) Monads in Haskell 45 / 61

Programming with actions / List Monad

List Monad (1)

Nice example of a monad is the list.
Informally, required operations are
implemented:
myFmap :: (a -> b) -> [a] -> [b]
myFmap = map

myApply :: [a -> b] -> [a] -> [b]
myApply fs xs = [f x | f <- fs, x <- xs]

myBind :: [a] -> (a -> [b]) -> [b]
myBind xs f = concat (map f xs)

Now, we can observe, what we can do

with such defined operators.

*Main> (+1) <$> [1,2,3]
[2,3,4]
Main> (+) <$> [1,2,3] <> [1,2,3]
[2,3,4,3,4,5,4,5,6]
*Main> [1,2] >>= \n -> ['a','b']

>>= \ch -> [(n,ch)]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]
*Main> [3,4,5] >>= (return . (+1))

>>= (return . (*2))
[8,10,12]

Marek Běhálek (VSB-TUO) Monads in Haskell 46 / 61

Programming with actions / IO Monad

IO Monad - just to remind you

In previous part, we have introduced a mechanism how actions can be chained → nicer
way how to write it.
But we have started with the idea, that impure actions (manipulating with state) will be
solved with monads.
We already know IO Monad that solves input - output operations.
-- inputLine :: String
getLine :: IO String
putStr :: String -> IO ()

do x <- getLine
putStr x -- y <- putStr x, y == ()

ready :: IO Bool
ready = do c <- getChar

return (c == 'y')

Marek Běhálek (VSB-TUO) Monads in Haskell 47 / 61

Programming with actions / State Monads

State Monad (1)

How does it work? The idea is captured in more general monad that captures state.
Lets first focuse on the idea → state manipulation can be captured like a function taking
original state and producing a pair (some value, new state).
type SimpleState s a = s -> (s, a)

retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)

Now, lets create a simple input containing a list of integers (our state is just this list).
type ListInput a = SimpleState [Int] a

readInt :: ListInput Int
readInt stateList = (tail stateList, head stateList)

Marek Běhálek (VSB-TUO) Monads in Haskell 48 / 61

Programming with actions / State Monads

State Monad (2)

Finally, lets try to make a function chaining actions (like >>=).
bind :: (s -> (s,a)) -- SimleState s a

-> (a -> (s -> (s, b))) -- a -> SimpleState s b
-> (s -> (s, b)) -- SimpleState s b

bind step makeStep oldState = -- Why 3 parameters?
let (newState, result) = step oldState
in (makeStep result) newState

Finally, we can bind actions as with monads.

*Main> (readInt `bind` \a->readInt `bind` (\b->retSt (a+b))) [1,2,3]
([3],3)

In our example, we have created a function defining what to do with the input. When it
is executed it bakes the result. If provided the same ingredients, it bakes the same result.

Marek Běhálek (VSB-TUO) Monads in Haskell 49 / 61

Programming with actions / State Monads

State Monad (3)

What if we want to realy make it a part of Monad type class (it will not work for type
synonym)?
newtype State s a = State { runState :: s -> (s, a) }

readInt' :: State [Int] Int
readInt' = State {runState = \s->(tail s, head s)}

instance Functor (State s) where
fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)

instance Applicative (State s) where
pure a = State (\s->(s,a))
f <*> m = State $ \s-> let (s',f') = runState f s

(s'',a) = runState m s' in (s'',f' a)
instance Monad (State s) where

return a = State (\s->(s,a))
m >>= k = State $ \s -> let (s',a) = runState m s in runState (k a) s'

Marek Běhálek (VSB-TUO) Monads in Haskell 50 / 61

Programming with actions / State Monads

State Monad (4)

We can even use do syntax now.
add :: State [Int] Int
add = do x<-readInt'

y<-readInt'
return (x+y)

Examples, how to use this state monad:

*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
([3],3)
*Main> runState add [1,2,3]
([3],3)

Finally, assuming we have RealWorld, we ca define type IO as:
type IO a = State RealWorld a
--getChar :: RealWorld -> (RealWorld, Char)
--main :: RealWorld -> (RealWorld, ())

Marek Běhálek (VSB-TUO) Monads in Haskell 51 / 61

Programming with actions / State Monads

Stacking Monads (1)

What if we want to use several monads → We want to use state and Maybe → monad
transformers (Control.Monad.Trans).
For example, we will use wrapper:
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
instance Monad m => Monad (MaybeT m) where

return = MaybeT . return . Just
-- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
x >>= f = MaybeT $ do

maybe_value <- runMaybeT x
case maybe_value of

Nothing -> return Nothing
Just value -> runMaybeT $ f value

Marek Běhálek (VSB-TUO) Monads in Haskell 52 / 61

Programming with actions / State Monads

Stacking Monads (2)

For practical purposes, we need lift function - it promotes base monad computations to
combined monad.

It is similar to liftM :: Monad m => (a -> b) -> (m a -> m b) method for combined
monad.

For example, we will use wrapper:
class MonadTrans t where

lift :: (Monad m) => m a -> t m a

instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)

Marek Běhálek (VSB-TUO) Monads in Haskell 53 / 61

Programming with actions / State Monads

Stacking Monads (3)

Example:
import Control.Monad.Trans.Maybe
import Control.Monad.IO.Class (liftIO)
import Text.Read

data Person = Person {name::String, age::Int} deriving Show

askPersonT :: MaybeT IO Person
askPersonT = do

name <- liftIO $ putStr "Name? " >> getLine
age <- MaybeT $ fmap readMaybe $ putStr "Age? " >> getLine
return $ Person name age

doIt = do result <-runMaybeT askPersonT
print result

Marek Běhálek (VSB-TUO) Monads in Haskell 54 / 61

Arrays in Haskell

Arrays in Haskell

Like in other languages Haskell has arrays.
Arrays (where we can get ith element in O(1)) are best choice for some algorithms.
Boxed (non-strict) arrays support lazy evaluation.
Unboxed (strict) - just values, only basic types, closer to memory block.
Arrays are in package array.

Immutable IO monad ST monad
instance IArray a e instance MArray a e IO instance MArray a e ST

Boxed Array IOArray STArray
DiffArray

Unboxed UArray IOUArray STUArray
DiffUArray StorableArray

Table: Comparison of an different arrays in Haskell

Marek Běhálek (VSB-TUO) Monads in Haskell 55 / 61

Arrays in Haskell

Immutable Array (1)

Immutable arrays are in modules: Data.Array or Data.Array.IArray
All these arrays use the same indexing.
class (Ord a) => Ix a where

range :: (a,a) -> [a]
index :: (a,a) a -> Int
inRange :: (a,a) -> a -> Bool

Then (based on imported array type), we create an array:
array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray :: Ix i => (i, i) -> [e] -> Array i e

squares = array (1,100) [(i, i*i) | i <- [1..100]]
listToArray = listArray (0,5) [8,4,9,6,7,1]

Marek Běhálek (VSB-TUO) Monads in Haskell 56 / 61

Arrays in Haskell

Immutable Array (2)

Accessing arrays (works also for IArray):
(!) :: (Array a e, Ix i) => a i e -> i -> e
bounds :: (Array a e, Ix i) => a i e -> (i, i)
indices :: (Array a e, Ix i) => a i e -> [i]
elems :: (Array a e, Ix i) => a i e -> [e]

Incremental array updates (works also for IArray):
(//) :: (Array a e, Ix i) => a i e -> [(i, e)] -> a i e

ghci> listArray (0,5) [8,4,9,6,7,1] // [(1,0),(2,0)]
array (0,5) [(0,8),(1,0),(2,0),(3,6),(4,7),(5,1)]

Derived arrays (amap requires IArray):
amap :: (IArray a e', IArray a e, Ix i) => (e'->e) -> a i e' -> a i e
ixmap :: (Array a e, Ix i, Ix j) => (i, i) -> (i->j) -> a j e -> a i e

Marek Běhálek (VSB-TUO) Monads in Haskell 57 / 61

Arrays in Haskell

Mutable Array (1)

Class of mutable array types:
class Monad m => MArray a e m ... --array: (a i e), index: Ix i

We need a monad to preserve a state: ST s or IO.
Constructing mutable arrays:
newArray :: (MArray a e m, Ix i) => (i, i) -> e -> m (a i e)
newListArray :: (MArray a e m, Ix i) => (i, i) -> [e] -> m (a i e)

Reading and writing mutable arrays:
readArray :: (MArray a e m, Ix i) => a i e -> i -> m e
writeArray :: (MArray a e m, Ix i) => a i e -> i -> e -> m ()

Derived arrays
mapArray::(MArray a e' m,MArray a e m, Ix i)=>(e'->e)-> a i e'->m (a i e)
mapIndices::(MArray a e m,Ix i,Ix j)=>(i, i)->(i->j)->a j e->m (a i e)

Marek Běhálek (VSB-TUO) Monads in Haskell 58 / 61

Arrays in Haskell

Mutable Array (2)

Deconstructing mutable arrays:
getBounds :: (MArray a e m, Ix i) => a i e -> m (i, i)
getElems :: (MArray a e m, Ix i) => a i e -> m [e]
getAssocs :: (MArray a e m, Ix i) => a i e -> m [(i, e)]

Conversions between mutable and immutable arrays:
freeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e)
thaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)

Let’s use monad ST to preserve the state.
Now, we have: data STArray s i e, it will be an instance of
MArray (STArray s) e (ST s)

Safe way to create and work with mutable array:
runSTArray :: (forall s. ST s (STArray s i e)) -> Array i e
It will return immutable array at the end (it will thaw the original array).

Marek Běhálek (VSB-TUO) Monads in Haskell 59 / 61

Arrays in Haskell

Mutable Array (3)

Example how to use mutable array:
modify :: Array Int Int -> Array Int Int
modify inputArray = runSTArray $ do

let end = (snd . bounds) inputArray
stArray <- thaw inputArray
forM_ [1 .. end] $ \i -> do

val <- readArray stArray i
when (val<0) $ do

writeArray stArray i 0
return stArray

ghci> modify $ listArray (0,3) [8,-4,-9,1]
array (0,3) [(0,8),(1,0),(2,0),(3,1)]

Marek Běhálek (VSB-TUO) Monads in Haskell 60 / 61

Conclusion

Conclusion

In Haskell, monads are a sort of functional envelop for in-pure functions.
Functions like bind, join or fmap allows us to work with these monads.

On the first sight, we can recognize a function working with input/output → it will have IO
in the type definition.
We can use the same design patterns for all monads.

Strictly speaking, we can forget all about the theory and just use do if it is a monad.

Marek Běhálek (VSB-TUO) Monads in Haskell 61 / 61

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

	Motivation
	Functions with No Side Effects
	IO Monad - practical approach
	Category Theory
	Monoid
	Functor
	Fun with Functors
	Monoidal Categories
	Applicative
	Monads
	Programming with actions
	List Monad
	IO Monad
	State Monads

	Arrays in Haskell
	Conclusion
	

