$$
\begin{aligned}
& \text { vŠB TECHNICKÁ } \\
& \left.\right|_{\mid} \left\lvert\, \begin{array}{l}
\text { UNIVERZITA } \\
\text { OSTRAVA }
\end{array}\right.
\end{aligned}
$$

VSB TECHNICAL

$$
\|_{\|} \left\lvert\, \begin{aligned}
& \text { UNIVERSITY } \\
& \text { OF OSTRAVA }
\end{aligned}\right.
$$

WWW.vsb.cz

Monads in Haskell
 behalek.cs.vsb.cz/wiki/Practical_Functional_Programming

Marek Běhálek

VSB - Technical University of Ostrava
marek.behalek@vsb.cz
November 4, 2022

```
VSB TECHNICAL | FACULTY OF ELECTRICAL
|||| UNIVERSITY ENGINEERING AND COMPUTER
    OF OSTRAVA SCIENCE
```


1 Motivation

2 Functions with No Side Effects
3 IO Monad - practical approach
4 Category Theory
5 Monoid
6 Functor
7 Fun with Functors
8 Monoidal Categories

9 Applicative
10 Monads
11 Programming with actions

- List Monad
- IO Monad
- State Monads

12 Arrays in Haskell
13 Conclusion

Functional programming I

- Declarative style of programming
- We define what needs to be computed, a run-time environment responsibility is how it will be evaluated.
- Similar to math, we have various rules how to simplify an expression, but there are different ways how these rules can be applied for given expression.
- Programming with expressions (no statements)
- Functional program is a set of function's definitions.
- Functions are first class citizens - a function can return a function, high-order functions, partially evaluated functions.
- Program's evaluation is the evaluation of some main expression.
- Immutable data structures - once created data can not be changed.
- Studied problem, plenty of possibilities.
- Common in API of many languages (C\#: string, DateTime, https://www.nuget.org/packages/System.Collections.Immutable/).
- Sometimes they are called persistent data structures.

Functional programming II

■ https://en.wikipedia.org/wiki/Persistent_data_structure
■ https://en.wikipedia.org/wiki/Persistent_array
■ What if I really need mutable data structure?
■ For example quick implementation of quicksort?

- No side effects
- Functions only return values, no changes other changes.
- For the same parameters, we always get the same result (referential transparency).
- But, sometimes side effects can not be avoided (input - output operations) - how to solve that?

Functions with No Side Effects (1)

■ What are side effects, how do i recognise them?

```
public double Add(double a, double b) {
    return a + b;
}
public double Add2(double a, double b) {
    try {
            Console.WriteLine($"a={a}, b={b}");
    } catch (Exception ex) { }
    return a + b;
}
public int Divide(int a, int b) {
    return a / b;
}
```


Functions with No Side Effects (2)

- How can I avoid them?

```
public int? Divide2(int a, int b) {
        if (b == 0)
            return null;
    return a / b;
}
public int Divide3(int a, NonZeroInteger b) {
    return a / b.Number;
}
```


Expressions (1)

- Lets start with data type Maybe
data Maybe a = Nothing | Just a

```
betterDiv :: Int -> Int -> Maybe Int
betterDiv x y | y==0 = Nothing
    | otherwise = Just (x `div` y)
```

■ Now we want to compute some expressions where we use it like a value type.

```
data Expr = Num Int
    | Add Expr Expr
    | Sub Expr Expr
    | Mul Expr Expr
    | Div Expr Expr
```


Expressions (2)

- Now we need to compute such expression

```
eval :: Expr -> Maybe Int
eval (Num x) = Just x
eval (Div x y) = case eval x of
    Nothing -> Nothing
    Just x' -> case eval y of
    Nothing -> Nothing
    Just y' -> betterDiv x' y'
eval (Add x y) = case eval x of
    Nothing -> Nothing
    Just x' -> case eval y of
    Nothing -> Nothing
    Just y' -> Just (x' + y')
```

■ We can see emerging patter, how actions are linked one after the other.

- Lets have simple operations.

```
compute :: Int -> Int
compute x = x * x
```

isItEnough :: Int -> Bool
isItEnough x = x > 9
■ We want then to compute values and log the context.
compute :: (Int, String) -> (Int, String)
compute (x, \log) = ($\mathrm{x} * \mathrm{x}, \log ++$ "Just square of $\mathrm{x} . "$)
isItEnough :: (Int, String) -> (Bool, String)
isItEnough (x, \log) = ($x>9$, log ++ "Compared to 9.")

- It this a good solution? How to improve the quality of our solution?
- What if I want to add the new entry at the start of log?

```
compute :: Int -> (Int, String)
compute x = (x * x, "Just square of x.")
isItEnough :: Int -> (Bool, String)
isItEnough x = (x > 9, "Compared to 9.")
applyLog :: (a,String) -> (a -> (b,String)) -> (b,String)
applyLog (x,log) f = let (y,newLog) = f x in (y,log ++ newLog)
```

*Main> applyLog (applyLog (2,"Initial value 2.") compute) isItEnough (False,"Initial value 2.Just square of x.Compared to 9.")
*Main> (2,"Initial value 2.") ‘applyLog`compute`applyLog` isItEnough (False,"Initial value 2.Just square of x.Compared to 9.")

- Is this the end? Can it be improved even further?
- What if they can not be avoided?

■ For example input - output operations? inputInt :: Int inputDiff = inputInt - inputInt
funny : : Int-> Int
funny $\mathrm{n}=$ inputInt +n

- Haskell uses programming with actions to solve this issue.
- Theoretically, we use thinks like Functor,

Applicative or Monad that comes from the category theory.

- For orthodox programmer, it is just some theory gibberish, for the others, it may provide interesting insight to the problem.
- Informally, a sort of pure functional envelop for non-pure actions.
■ Practically, its a set of design patterns solving plenty of situations that are frequently occurring in practice.
- This part is for programmers, that do not care about a theory.

■ There is a special type () with only value () called unit type - representing a sort of dummy value.

- All input and output actions can be recognized by having IO in their type definition.
- Input: getLine :: IO String

■ Output: putStr :: String -> IO ()

- Usually, when we are talking about monads, we say, that they represents some sort of containers \rightarrow better intuition for IO is: bake :: Recipe Cake.
- You can glue these actions by syntax construct: do.
- How to get value from/to IO?
- There is a syntactic construct in do (called bind): x <- action, where if action :: IO a, then the type of variable x is a.
- There is a function return :: a -> IO a, it can be used to put a common value into IO.
- Finally, the function main has a type: main :: IO a
- And that is all, Is it clear?
- Simple example:

```
main = do
    putStrLn "Hello, what's your name?"
    name <- getLine
    let bigName = map toUpper name
    putStrLn ("Hey " ++ bigName ++ ", you rock!")
```

■ Now, we can compile it and execute.

```
PS C:\> ghc .\test.hs
[1 of 1] Compiling Main (test.hs, test.o )
Linking test.exe ...
PS C:\> .\test.exe
Hello, what\'s your name?
Marek
Hey MAREK, you rock!
```

- The construct do is just an expression, we can use it in the same way... main = do
line <- getLine
if null line
then return ()
else do
print \$ reverseWords line
main
reverseWords :: String -> String
reverseWords = unwords . map reverse . words
- You should notice, that return does not end the function like in common languages. main = do
a <- return "hell"
b <- return "yeah!"
putStrLn \$ a ++ " " ++ b
- Interesting question, can we use high order functions with monad IO?
mySequence :: [IO a] -> IO [a]
mySequence [] = return []
mySequence (ma:mas) = do
a <- ma
as <- sequence mas
return (a:as)

```
ghci> mySequence [getLine, getLine, getLine]
a
b
c
["a","b","c"]
```

- Plenty of functions in: Control. Monad.

IO Monad (5)

■ For example forM (this is as close to for cycle as you can get in Haskell :-) import Control.Monad

```
main = do
    lines <- forM [1,2,3] (\a -> do
        putStrLn $ "Give me " ++ show a ++ " line."
        getLine)
    print lines
Give me 1 line.
Hello
Give me 2 line.
Haskell
Give me 3 line.
programmers
["Hello","Haskell", "programmers"]
```

- We can use IO monad for working with files.

■ For example we can start with: openFile :: FilePath -> IOMode -> IO Handle import System.IO

```
main = do
    handle <- openFile "test.hs" ReadMode
    contents <- hGetContents handle
    putStr contents
    hClose handle
- But, there are plenty of other functions:
    ■ withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
| readFile :: FilePath -> IO String
■ writeFile :: FilePath -> String -> IO (), also appendFile
```

■ Haskell also have exceptions \rightarrow high order function:

```
catch :: Exception e => IO a -> (e -> IO a) -> IO a
```

import System.IO
import System.IO.Error
main $=$ toTry `catch` handler
toTry :: IO ()
toTry $=$ do contents $<-$ readFile "test.txt"
putStrLn \$ "Lines: " ++ show (length (lines contents))
handler :: IOError -> IO ()
handler e = putStrLn "Whoops, had some trouble!"

- Functions like isDoesNotExistError or isFullError to distinguish between exception.
- System.Environment - for example, for handling command line arguments:
getArgs :: IO [String].
- System.Random - also random numbers are part of monad IO, but here it is complicated.
- We need to install package random: stack ghci --package random
- Now we have:

```
random :: (RandomGen g, Random a) => g -> (a, g)
randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)
```

```
ghci> random (mkStdGen 1) :: (Bool, StdGen)
    (True,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})
ghci> randomR (1,6) (mkStdGen 1)
(6,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})
```

- IO have also one random generator (getStdGen) stored inside \rightarrow we can use functions: randomIO, randomRIO.
- Be warned. All REAL programmers should stop reading NOW. We will continue with the theory behind monads so we can outgrowth the IO monad
- Programming is based on math.
- What kind of math? \rightarrow geometry, algebra, topology, set theory, type theory, ...
- There are different kinds of mathematics \rightarrow even if developed independently, they share some ideas (for example Curry-Howard correspondence) \rightarrow Category theory reveals how different kinds of structures are related to one another.
- Category theory is a toolset for describing the general abstract structures in mathematics.

■ Category theory is very well suited for programmers \rightarrow things we normally do overlap with problems category theory is studying.

- It deals with structure, omitting particulars (abstraction).
- In its roots, it study composition \rightarrow holy grail of programming (bigger blocks are composed from components) \rightarrow composition is crucial in many programming paradigms.
- Haskell have been tapping category theory for a long time, but the ideas can be used also in other languages.

Category Theory - Basics (1)

- Category C is algebraic structure consisting of:
- collection of objects - obj(C)
- arrows (or morphisms or maps) - hom(C)

■ $f: a \rightarrow b-f$ is a morphism from a to b.

- $\operatorname{hom}(a, b)$ - hom-set - denotes a set of morphisms from a to b.
- Also, we have a binary operation \circ called composition of morphisms.

■ For any three objects a, b and $c: \circ: \operatorname{hom}(b, c) \times \operatorname{hom}(a, b) \rightarrow \operatorname{hom}(a, c)$.

- For any pair of $f: a \rightarrow b$ and $g: b \rightarrow c$ there exists a composition (composite morphism) written as $g \circ f: a \rightarrow c$.
- Identity: For every object x, there exists a morphism $1_{x}: x \rightarrow x$ called the identity morphism for x, such that for every morphism $f: a \rightarrow b$, we have $1_{b} \circ f=f=f \circ 1_{a}$.
- Associativity: If $f: a \rightarrow b, g: b \rightarrow c$ and $h: c \rightarrow d$ then $h \circ(g \circ f)=(h \circ g) \circ f$.

Category Theory - Basics (2)

id_b

Figure: Are these schematics for categories?

■ Usually, a schematics for a category is a
multigraph where objects are verticies, and morphisms are oriented edges.

- When we are talking about categories in programming, most common example are types and functions.
- For example our figure depicts functions:

$$
\begin{aligned}
& \mathrm{f}:: \mathrm{a}->\mathrm{b} \\
& \mathrm{~g}:: \mathrm{b}->\mathrm{c}
\end{aligned}
$$

- Function $g \circ f$ can be defined as:

$$
\begin{aligned}
& \mathrm{gf}:: \mathrm{a}->\mathrm{c} \\
& \mathrm{gf}=\backslash \mathrm{x}->\mathrm{g}(\mathrm{f} \quad \mathrm{x})
\end{aligned}
$$

Category Theory - Monoid

- Important algebraic structure in category theory is monoid.
- Part of set theory, used even before the whole category theory thing \rightarrow we already know this term from set theory \rightarrow what is their relation?
- A set S with $*: S \times S \rightarrow S$ (multiplication) is a monoid M if it satisfies:
- Associativity: For all a, b and c in S, the equation $(a * b) * c=a *(b * c)$ holds.
- Unit element: There exists an element e (unit) in S such that for every element a in S, the equalities $e * a=a$ and $a * e=a$ hold.
- An individual monoid $(M, *, e)$ can be a category C where:
- the collection of objects $\operatorname{obj}(C)$ is single object - M;
- the collection of morphisms $\operatorname{hom}(C)$ is set M itself, which mean, each element in set M is a morphism in category C;
- the composition operation \circ of C is $*$ - since each morphism in C is element in M, the composition of morphisms is just the multiplication of elements;
- the identity morphism of C is unit element e
- In this way, since $M_{, *}$ and e satisfies the monoid laws, apparently the category laws are satisfied.

Monoid in Haskell (1)

- Stop this theory gibberish, what it has to do with mentioned practical examples?
■ Let's define monoid in Haskell.
-- Data.Monoid
-- class Semigroup a => Monoid a where
class Monoid m where
mempty : : m
mappend :: m -> m -> m
mconcat :: [m] -> m mconcat $=$ foldr mappend mempty
- What about the rules for monoid?
mempty `mappend` $\mathrm{x}=\mathrm{x}$
x `mappend` mempty $=\mathrm{x}$
(x `mappend` y) `mappend` z
$=x$ `mappend` (y `mappend` z)
- (This is embarrassing.) Haskell can not enforce them, programmer is kindly asked to obey them.

Monoid in Haskell (2)

- Plenty of types are instances of Monoid.

```
instance Monoid [a] where
    mempty = []
    mappend = (++)
    ■ All, Any, First, Last, Maybe, Ordering, IO, Sum, Product, ...
```

- Do you remember our logging example? We can modify our logging function like this: applyLog : : (Monoid m) => (a, m) -> (a -> (b,m)) -> (b,m) applyLog (x, \log) $f=$ let ($y, n e w L o g$) $=f x$ in ($y, l o g$ `mappend` newLog)
*Main> (2,"Initial value 2.") `applyLog` compute `applyLog` isItEnough (False,"Initial value 2.Just square of x.Compared to 9.")
- The result is the same, but now... (wait for it:-)
- We can use the same function applyLog with all types that are instances of Monoid.
- Let's say, we want to log just some events.

```
addMore :: Int -> (Int, Maybe String)
addMore x
    | x == 2 = (x+1, Just "Nice.")
    | x == 1 = (x+1, Just "More!")
    | otherwise = (x+1, Nothing)
```

```
*Main> (1,Nothing) `applyLog` addMore `applyLog` addMore `applyLog` addMore
(4,Just "More!Nice.")
```

■ Is it better then before? We all agree that it is. Right ?!?

- Motivation
- Our original goal was to find some nice (design) patterns for frequently occurring problems.
- Lets say, we found one, what next? \rightarrow prepare abstract solution capturing the idea \rightarrow apply it to solve other problems.
- In terms of categories, this abstraction is captured by a category and we need to transfer it to other categories.
- Functor is a mapping between categories that preserve a structure \rightarrow it preserve identity morphisms and composition of morphisms.
■ Let C and D be categories. A functor F from C to D is a mapping (function) that:
- associates each x in obj (C) to an object $F(X)$ in $o b j(D)$,
- associates each morphism $f: X \rightarrow Y$ in C to a morphism $F(f): F(X) \rightarrow F(Y)$ in D such that the following two conditions hold:
- $F\left(i d_{x}\right)=i d_{F(x)}$ for every x in obj(C),
- $F(g \circ f)=F(g) \circ F(f)$ for all morphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ in C

But how to implement functors in Haskell?

- Lets say, we just want to add Maybe for capturing errors \rightarrow We want to map our structure to Maybe category \rightarrow We need a functor.
- First, we need to map objects (types) \rightarrow type constructor Maybe
- Second, we need to map morphisms (functions):

```
fmap :: (a->b) -> (Maybe a -> Maybe b)
fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing
```

- Let's try to generalize this approach. We introduce new type class: Functor
-- (* -> *) -> Constraint class Functor f where

$$
\begin{aligned}
& --\$::(\mathrm{a} \mathrm{->} \mathrm{b)} \mathrm{->} \mathrm{a} \mathrm{->} \mathrm{~b} \\
& \text { fmap :: (a -> b) -> f a -> f b }
\end{aligned}
$$

- What is f in the definition? \rightarrow A type constructor with kind * -> * and a method fmap.
- Kind in haskel is a type of the type.

```
*Main> :kind Int
Int :: *
*Main> :kind Maybe
Maybe :: * -> *
```

- Note, the result is similar to operator $\$$, we can even use it in the same way.
■ There is even an operator: <\$> = fmap
- So, we can do:

```
*Main> (+1) $ (*2) $ (+3) $ 1 --looks good, but it's cheating...
9
*Main> (+1) `fmap` ((*2) `fmap` ((+3) `fmap` (Just 1)))
Just 9
*Main> (+1) <$> (*2) <$> (+3) <$> (Just 1) -- fmap on ->
Just 9
```

- What about operations like +?

```
*Main> (+) <$> (Just 1) -- Maybe (Int -> Int)
```

- Again, plenty of types are instances of Functor.
- List [] here: fmap = map

■ ->, First, Last, Sum, Product, Min, Max, Identity, IO, ST a, Array i,...

■ What about Either a b, can it be a functor?
-- * -> * -> *
data Either $\begin{aligned} \mathrm{a} \mathrm{b} & =\text { Left } \mathrm{a} \\ & \mid \text { Right } \mathrm{b}\end{aligned}$
■ Not really, but Either a is OK!

```
instance Functor (Either a) where
    fmap _ (Left x) = Left x
    fmap f (Right y) = Right (f y)
```

- When we are defining a function, we are using ->. What is it? Can it be a functor? How to define fmap then?

■ Is that all? What about the rules from the functor definition?
fmap id == id -- Identity
fmap (f . g) == fmap f. fmap g -- Composition

- Again, programmer is kindly asked to obey them.
- It does not obey mentioned rules, but it will work.

```
data CMaybe a = CNothing | CJust Int a
```

instance Functor CMaybe where

```
        fmap f CNothing = CNothing
        fmap f (CJust counter x) = CJust (counter+1) (f x)
```

- Endofunctor is a functor where the source and the target category is the same.
- Strictly speaking, the Functor class represents endofunctors on the category of Haskell types and functions.
- Endofunctors are interesting because they do a good job of representing structures inside categories that work for any object.

■ Are we done with functors? (NO! The fun barely started:-)

- Category of categories - Cat
- Functors can be composed: if we have $F: C \rightarrow D$ and $G: D \rightarrow E$ it is easy to define new functor $H: C \rightarrow E$ as $G \circ F$
- We can always define an identity functor.

■ Natural transformation defines a relation between functors. For $F: C \rightarrow D$ and $G: C \rightarrow D$, the natural transformation $\alpha: F \Rightarrow G$ is a family of morphisms (from D) where:

- $\forall X \in \operatorname{obj}(C)$, we pick a morphism $\alpha_{X}: F(X) \rightarrow G(X)$ in D (called the component of α_{X} at X.
- $\forall f: X \rightarrow Y \in \operatorname{hom}(C), \alpha_{Y} \circ F(f)=G(f) \circ \alpha_{X}$ (naturality square or condition).

Fun with functors II

- Logical next step is: Category of functors $[C, D]$ or D^{C}
- Objects $\operatorname{obj}\left(D^{C}\right)$ are functors from C to D
- Morphisms hom (D^{C}) are natural transformations between those functors.
- Identity $i d_{F}: F \Rightarrow F$ - maps each functor to itself.
- Composition of $\alpha: F \Rightarrow G$ and $\beta: G \Rightarrow H$ is $(\beta \circ \alpha): F \Rightarrow H$, defined as composition of morphisms in D :
$(\beta \circ \alpha)_{X}: F(X) \Rightarrow H(X)=\left(\beta_{X}: G(X) \rightarrow H(X)\right) \circ\left(\alpha_{X}: F(X) \rightarrow G(X)\right.$ (so they obey the associativity).

Fun with functors III

■ If we use the same category, we get: Category of endofunctors C^{C}

- Haskell functors are in fact endofunctors on category of types and functions. What will be a natural transformation? \rightarrow Polymorphic function with type:
alpha :: F a -> G a -- for all a
- Note: Most such polymorphic functions are natural transformations.
- Note: We can not really change the value, just its computational context.
- Example

```
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x
```

```
*Main> (safeHead . fmap (+1)) [1]
Just 2
*Main> (fmap (+1) . safeHead) [1]
Just 2
```

- What about the naturality square $\rightarrow \mathrm{It}$ is always satisfied! (Nice:-). (alpha . fmap f) $=(f m a p f . a l p h a)$

Monoidal Categories (1)

- A product category $C \times D$ is a category where:
- objects are pairs: (A, B) where $A \in \operatorname{obj}(C), B \in o b j(D)$
- there is a morphisms $(f, g):\left(A_{1}, B_{1}\right) \rightarrow\left(A_{2}, B_{2}\right)$ for all pairs of morphisms: $f: A_{1} \rightarrow A_{2}$ from C and $g: B_{1} \rightarrow B_{2}$ from D
- composition: $\left(f_{2}, g_{2}\right) \circ\left(f_{1}, f_{2}\right)=\left(f_{2} \circ f_{1}, g_{2} \circ g_{1}\right)$
- identity: $1_{(A, B)}=\left(1_{A}, 1_{B}\right)$
- A bifunctor is the mapping from a product category $C \times D$ to category E, denoted: $F: C \times D \rightarrow E$.
- Again in haskell it is implemented as $p: C \times C \rightarrow C$.
class Bifunctor p where

```
    bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
    first : : (a -> b) -> p a c -> p b c
    second :: (b -> c) -> p a b -> p a c
```

■ Good example is: Bifunctor Either or Bifunctor (,).

Monoidal Categories (2)

- A monoidal category (C, \otimes, I) is a category C equipped with:
- a bifunctor $\otimes: C \times C \rightarrow C$ called monoidal product or tensor product;
- an object I called (monoid, tensor) unit or identity object;
- moreover, it needs to be equipped with natural transformations to satisfy monoid laws:
- associator: $\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \Rightarrow X \otimes(Y \otimes Z)$, where $X, Y, Z \in \operatorname{obj}(C)$

■ left unitor: $\lambda_{A}: I \otimes A \Rightarrow A$ and right unitor: $\rho_{A}: A \otimes I \Rightarrow A$

- Category theory gives us a new way, how to define a monoid. If we have a monoidal category (C, \otimes, I) then any $M \in \operatorname{obj}(C)$ with two morphisms:
- $\mu: M \otimes M \rightarrow M$ (multiplication)
- $\eta: I \rightarrow M$ (unit)
is a monoid.
■ Hold that thought, we will use right after applicative...

■ On our path to monads, we can continue with different types of monoidal functors, but as programmers we have something more intuitive: Applicative functor.

- Informally, monoidal functors are functors between two monoidal categories that preserves monoidal structure.
- Applicative functors are the programming equivalent of lax monoidal functors with tensorial strength (if it means something:-).
- Applicative functors allow for functorial computations to be sequenced (unlike plain functors), but don't allow using results from prior computations in the definition of subsequent ones (unlike monads).
- Applicative functor is a functor with the ability to apply functor-wrapped functions with functor-wrapped values. It is a functor with two
class Functor $f=>$ Applicative f where
pure :: a -> f a
-- \$:: (a -> b) -> a -> b
-- fmap :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

Applicative (2)

■ Again, it must preserve some additional rules.
■ Identity: pure id <*> v = v
■ Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
■ Homomorphism: pure $f<*\rangle$ pure $x=$ pure (f x)
■ Interchange: u <*> pure y = pure (\$ y) <*> u

- We can notice, that if we have a type from Applicative, we have also Functor

```
fmap f x = (pure f) <*> x
instance Applicative Maybe where
    pure x = Just x
    (Just f) <*> (Just x) = Just (f x)
    _ <*> _ = Nothing
```

Main> (Just (+)) <> (Just 1) <*> (Just 2)
Just 3
Main> (+) <\$> (Just 1) <> (Just 2)
Just 3

■ We defined a monoidal category \rightarrow but endofunctor in a endofunctor category can be monoidal too.

- Such Monoid in the category of endofunctors is a monad.
- Formally, for category C, a monad F is an endofunctor $F: C \rightarrow C$ equipped with two natural transformations:
- monoid multiplication \odot or $\mu: \odot: F(F) \Rightarrow F$ (for clarity denotated: $F \odot F \Rightarrow F$)- for each $X \in \operatorname{obj}(C)$, \odot maps $F(F(X) \rightarrow F(X)$;
- monoid unit $\eta, \eta: 1_{C} \Rightarrow F, 1_{C}$ is in fact identity functor, $\forall X \in C: 1_{C}(X)=X$, so η is in fact mapping: $X \rightarrow F(X)$.
- Moreover, it preserve following rules:
- Associativity preservation $\alpha:(F \odot F) \odot F \equiv F \odot(F \odot F)$
- Left unit preservation $\lambda: \eta \odot F \equiv F$
- Right unit preservation $\rho: F \equiv F \odot \eta$
- So, now is the moment when the theory should compose together and shine:-)

1 Haskell type class Functor represents in fact endofunctors on category of Haskell types and functions (H). We can define a category of endofunctors H^{H}.
2 In this category, objects are instances of Functor (for example F and G) and morphisms are natural transformations between then \rightarrow they are polymorphic functions: alpha :: F a -> G a
3 If we want to make our category H^{H} a monoidal category, we need to introduce a tensor product $\left(H^{H} \times H^{H}\right) \rightarrow H^{H}$ and tensor unit (object from H^{H}). One natural way to do that, is to define:

- tensor product as composition of endofunctors: $F \circ G$ (it is associative);
- tensor unit as identity endofunctor: $I d$.

4 To define a monoid based H^{H} on we need to pick an object - endofunctor T along with two morphisms (natural transformations in H):

■ $\mu: T \otimes T \rightarrow T$ - function: join :: T (T a) -> T a

- $\eta: I \rightarrow M$ (unit) - function return : : a -> T a

5 Finally, such endofunctor T is a monad! \rightarrow It is a monoid in the category of endofunctors.

Monads - Programmers Way (1)

■ New functions are produced like a composition of functions \rightarrow important abstraction mechanism. (.) :: (b -> c) -> (a -> b) -> a -> c

- The ordering of functions does not matter, we can introduce:
(>.>) :: (a ->
b) -> (b ->
c) -> a -> c

■ We want to have something similar to that for our Functor class. How the functions from our examples looked liked?

```
eval :: Expr -> Maybe Int
compare :: Int -> Maybe Bool
```

- So, to be able to compose such functions, we need something like:

```
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
```

■ Consider, we have an operator $\gg=$ (bind): (>>=) :: m a -> (a -> m b) -> mb

- Then it is easy, operator $>=>$ (Fish operator, Klesli category) can be defined as:

$$
\begin{aligned}
\mathrm{f}(>=>) \mathrm{g}=\backslash \mathrm{a}-> & \text { let } \mathrm{mb}=\mathrm{f} a \\
& \text { in } \mathrm{mb} \gg=\mathrm{g}
\end{aligned}
$$

Monads - Programmers Way (2)

- OK, we have eliminated some unnecessary staff, but we still need:
(>>=) :: m a -> (a -> m b) -> m b, right?
- That is precisely how monads are defined in Haskell.

```
class Applicative f => Monad f where
    (>>=) :: f a -> (a -> f b) -> f b
    return :: a -> f a
```

- Again, if we have Monad, we also have Functor and Applicative. The prove, is not that obvious as before.

```
fmap fab ma = ma >>= (\x -> return (fab x)) -- (return.fab)
pure a = return a
mfab <*> ma = mfab >>= (\ fab -> ma >>= (return . fab))
```


Monads - Programmers Way (3)

- Alternatively, if we want to define >>= and we know that f is a Functor. Bind operator can be defined:

```
(>>=) :: f a -> (a -> f b) -> f b
```

ma $\gg=f=$ join (fmap f ma)
-- in API: join : : Monad $m=>m(m a)->m a$
join : : m (m a) -> m a

- So, in theory a monad can be also defined by functions: join and return \rightarrow Wait, that's our μ and η morphisms in monad definition. \rightarrow That's precisely where we ended up following the category theory!
■ We can easily define $=\ll$ that just swaps the parameters of bind:

- Now, we can chain actions better.

```
*Main> (Just 1) >>= (\x-> return (x+1))
Just 2
*Main> (Just (+)) >>= (\y -> Just (y 1 2)) >>= (\x -> return (x+1))
Just 4
*Main> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Just "3!"
*Main> Just 3 >>= \x -> Just "!" >>= \y -> Just (show x ++ y)
Just "3!"
```

■ We can even solve our original problem!

Programming with actions (2)

- Solving maybe expressions with monads.

```
eval :: Expr -> Maybe Int
eval (Num x) = return x
eval (Div x y) = eval x >>= (\x' -> eval y >>= (\y' -> betterDiv x' y'))
eval (Add x y) = eval x >>= \x' -> eval y >>= \y' -> return ( x'+ y')
eval (Mul x y) = eval x >>=
    \x' -> eval y >>=
    \y' -> return ( x'* y')
eval (Sub x y) = do x' <- eval x
    y' <- eval y
    return ( x'- y')
```


List Monad (1)

- Nice example of a monad is the list. Informally, required operations are implemented:

```
myFmap :: (a -> b) -> [a] -> [b]
myFmap \(=\) map
```

myApply :: [a -> b] -> [a] -> [b]
myApply fs $x s=[f \times \mathrm{f} \mid \mathrm{f}<-\mathrm{fs}, \mathrm{x}<-\mathrm{xs}$]
myBind :: [a] -> (a -> [b]) -> [b]
myBind $x s f=$ concat (map $f x s$)

- Now, we can observe, what we can do
with such defined operators.

```
*Main> (+1) <$> [1,2,3]
[2,3,4]
*Main> (+) <$> [1,2,3] <*> [1,2,3]
[2,3,4,3,4,5,4,5,6]
*Main> [1,2] >>= \n -> ['a','b']
        >>= \ch -> [(n,ch)]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]
*Main> [3,4,5] >>= (return . (+1))
    >>= (return . (*2))
[8,10,12]
```

- In previous part, we have introduced a mechanism how actions can be chained \rightarrow nicer way how to write it.
- But we have started with the idea, that impure actions (manipulating with state) will be solved with monads.
- We already know IO Monad that solves input - output operations.

```
-- inputLine :: String
getLine :: IO String
putStr :: String -> IO ()
do x <- getLine
    putStr x -- y <- putStr x, y == ()
ready :: IO Bool
ready = do c <- getChar
    return (c == 'y')
```


State Monad (1)

■ How does it work? The idea is captured in more general monad that captures state.

- Lets first focuse on the idea \rightarrow state manipulation can be captured like a function taking original state and producing a pair (some value, new state).

```
type SimpleState s a = s -> (s, a)
retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)
```

- Now, lets create a simple input containing a list of integers (our state is just this list). type ListInput a = SimpleState [Int] a

```
readInt :: ListInput Int
readInt stateList = (tail stateList, head stateList)
```


State Monad (2)

■ Finally, lets try to make a function chaining actions (like >>=).

```
bind :: (s -> (s,a)) -- SimleState s a
    -> (a -> (s -> (s, b))) -- a -> SimpleState s b
    -> (s -> (s, b)) -- SimpleState s b
bind step makeStep oldState = -- Why 3 parameters?
    let (newState, result) = step oldState
    in (makeStep result) newState
```

- Finally, we can bind actions as with monads.

```
*Main> (readInt `bind` \a->readInt `bind` (\b->retSt (a+b))) [1,2,3]
([3],3)
```

- In our example, we have created a function defining what to do with the input. When it is executed it bakes the result. If provided the same ingredients, it bakes the same result.

State Monad (3)

■ What if we want to realy make it a part of Monad type class (it will not work for type synonym)?

```
newtype State s a = State { runState :: s -> (s, a) }
readInt' :: State [Int] Int
readInt' = State {runState = \s->(tail s, head s)}
instance Functor (State s) where
    fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)
instance Applicative (State s) where
    pure a = State (\s->(s,a))
    f <*> m = State $ \s-> let (s',f') = runState f s
                                (s'',a) = runState m s' in (s'',f' a)
instance Monad (State s ) where
    return a = State (\s->(s,a))
    m >>= k = State $ \s -> let (s',a) = runState m s in runState (k a) s'
```


State Monad (4)

- We can even use do syntax now.

```
add :: State [Int] Int
add = do x<-readInt'
    y<-readInt'
    return (x+y)
```

- Examples, how to use this state monad:

```
*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
([3] ,3)
*Main> runState add [1,2,3]
([3],3)
```

- Finally, assuming we have RealWorld, we ca define type IO as:
type IO a = State RealWorld a
--getChar :: RealWorld -> (RealWorld, Char)
--main :: RealWorld -> (RealWorld, ())

Stacking Monads (1)

- What if we want to use several monads \rightarrow We want to use state and Maybe \rightarrow monad transformers (Control.Monad.Trans).
- For example, we will use wrapper:
newtype MaybeT m a = MaybeT \{ runMaybeT : : m (Maybe a) \} instance Monad m => Monad (MaybeT m) where

```
return = MaybeT . return . Just
    -- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
    x >>= f = MaybeT $ do
        maybe_value <- runMaybeT x
        case maybe_value of
            Nothing -> return Nothing
            Just value -> runMaybeT $ f value
```


Stacking Monads (2)

- For practical purposes, we need lift function - it promotes base monad computations to combined monad.
- It is similar to liftM :: Monad m => (a -> b) -> (m a -> m b) method for combined monad.
- For example, we will use wrapper:
class MonadTrans t where
lift : : (Monad m) => m a -> t m a
instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)

Stacking Monads (3)

- Example:

```
import Control.Monad.Trans.Maybe
import Control.Monad.IO.Class (liftIO)
import Text.Read
data Person = Person {name::String, age::Int} deriving Show
askPersonT :: MaybeT IO Person
askPersonT = do
    name <- liftIO $ putStr "Name? " >> getLine
    age <- MaybeT $ fmap readMaybe $ putStr "Age? " >> getLine
    return $ Person name age
doIt = do result <-runMaybeT askPersonT
    print result
```


Arrays in Haskell

■ Like in other languages Haskell has arrays.

- Arrays (where we can get $i^{t h}$ element in $O(1)$) are best choice for some algorithms.
- Boxed (non-strict) arrays support lazy evaluation.

■ Unboxed (strict) - just values, only basic types, closer to memory block.

- Arrays are in package array.

	Immutable	IO monad	ST monad
	instance IArray a e	instance MArray a e IO	instance MArray a e ST
Boxed	Array	IOArray	STArray
Unboxed	DiffArray		
	UArray	IOUArray	STUArray
	DiffUArray	StorableArray	

Table: Comparison of an different arrays in Haskell

■ Immutable arrays are in modules: Data.Array or Data.Array.IArray

- All these arrays use the same indexing.

class (Ord a)	$=>$ Ix a where
range	$::(\mathrm{a}, \mathrm{a})->$ [a]
index	$::(\mathrm{a}, \mathrm{a}) \mathrm{a}->$ Int
inRange	$::(\mathrm{a}, \mathrm{a})->\mathrm{a}->$ Bool

- Then (based on imported array type), we create an array:

```
array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray :: Ix i => (i, i) -> [e] -> Array i e
```

```
squares = array (1,100) [(i, i*i) | i <- [1..100]]
listToArray = listArray (0,5) [8,4,9,6,7,1]
```


Immutable Array (2)

- Accessing arrays (works also for IArray):

```
(!) :: (Array a e, Ix i) => a i e -> i -> e
bounds :: (Array a e, Ix i) => a i e -> (i, i)
indices :: (Array a e, Ix i) => a i e -> [i]
elems :: (Array a e, Ix i) => a i e -> [e]
```

- Incremental array updates (works also for IArray):
(//) :: (Array a e, Ix i) => a i e -> [(i, e)] -> a i e

```
ghci> listArray (0,5) [8,4,9,6,7,1] // [(1,0),(2,0)]
array (0,5) [(0,8),(1,0),(2,0),(3,6),(4,7),(5,1)]
```

- Derived arrays (amap requires IArray):
amap :: (IArray a e', IArray a e, Ix i) => (e'->e) -> a i e' -> a i e ixmap :: (Array a e, Ix i, Ix j) => (i, i) -> (i->j) -> a j e -> a i e
- Class of mutable array types:
class Monad m => MArray a e m ... --array: (a i e), index: Ix i
- We need a monad to preserve a state: ST s or IO.

■ Constructing mutable arrays:
newArray :: (MArray a e m, Ix i) => (i, i) -> e -> m (a i e) newListArray :: (MArray a e m, Ix i) => (i, i) -> [e] -> m (a i e)

- Reading and writing mutable arrays:

```
readArray :: (MArray a e m, Ix i) => a i e -> i -> m e
writeArray :: (MArray a e m, Ix i) => a i e -> i -> e -> m ()
```

- Derived arrays
mapArray:: (MArray a e' m, MArray a e m, Ix i) $=>\left(e^{\prime}->e\right)->~ a ~ i ~ e^{\prime}->m ~(a ~ i ~ e) ~$ mapIndices::(MArray a e m, Ix $i, \operatorname{Ix} j)=>(i, i)->(i->j)->a j$ e->m (a i e)
- Deconstructing mutable arrays:
getBounds :: (MArray a e m, Ix i) $=>$ a i e $->$ m (i, i) getElems :: (MArray a e m, Ix i) $=>$ a i e $->$ m [e] getAssocs :: (MArray a e m, Ix i) => a i e -> m [(i, e)]
- Conversions between mutable and immutable arrays: freeze :: (Ix i, MArray a e m, IArray b e) \Rightarrow a i e $->$ m (b i e) thaw :: (Ix i, IArray a e, MArray bem) => a i e -> m (b i e)
- Let's use monad ST to preserve the state.

■ Now, we have: data STArray s i e, it will be an instance of MArray (STArray s) e (ST s)

- Safe way to create and work with mutable array: runSTArray : : (forall s. ST s (STArray s i e)) -> Array i e It will return immutable array at the end (it will thaw the original array).

Mutable Array (3)

- Example how to use mutable array:

```
modify :: Array Int Int -> Array Int Int
modify inputArray = runSTArray $ do
    let end = (snd . bounds) inputArray
    stArray <- thaw inputArray
    forM_ [1 .. end] $ \i -> do
        val <- readArray stArray i
        when (val<0) $ do
            writeArray stArray i 0
    return stArray
```

```
ghci> modify $ listArray (0,3) [8,-4,-9,1]
array (0,3) [(0,8),(1,0),(2,0),(3,1)]
```

■ In Haskell, monads are a sort of functional envelop for in-pure functions.
■ Functions like bind, join or fmap allows us to work with these monads.

- On the first sight, we can recognize a function working with input/output \rightarrow it will have IO in the type definition.
- We can use the same design patterns for all monads.

■ Strictly speaking, we can forget all about the theory and just use do if it is a monad.

Thank you for your attention

Marek Běhálek

VSB - Technical University of Ostrava
marek.behalek@vsb.cz

November 4, 2022

```
VSB TECHNICAL | FACULTY OF ELECTRICAL
|||| UNIVERSITY ENGINEERING AND COMPUTER
    OF OSTRAVA SCIENCE
```

