VŠB TECHNICKÁ ||||| UNIVERZITA OSTRAVA

VSB TECHNICAL

www.vsb.cz

Monads in Haskell behalek.cs.vsb.cz/wiki/Practical_Functional_Programming

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

VSB TECHNICAL | FACULTY OF ELECTRICAL UNIVERSITY | ENGINEERING AND COMPUTER OF OSTRAVA | SCIENCE

1 Motivation

- 2 Functions with No Side Effects
- 3 IO Monad practical approach
- 4 Category Theory
- 5 Monoid
- 6 Functor
- 7 Fun with Functors
- 8 Monoidal Categories

- 9 Applicative
- 10 Monads
- 11 Programming with actions
 - List Monad
 - IO Monad
 - State Monads
- 12 Arrays in Haskell
- 13 Conclusion

Functional programming I

- Declarative style of programming
 - We define what needs to be computed, a run-time environment responsibility is how it will be evaluated.
 - Similar to math, we have various rules how to simplify an expression, but there are different ways how these rules can be applied for given expression.
- Programming with expressions (no statements)
 - Functional program is a set of function's definitions.
 - Functions are first class citizens a function can return a function, high-order functions, partially evaluated functions.
 - Program's evaluation is the evaluation of some main expression.
- Immutable data structures once created data can not be changed.
 - Studied problem, plenty of possibilities.
 - Common in API of many languages (C#: string, DateTime,

https://www.nuget.org/packages/System.Collections.Immutable/).

Sometimes they are called persistent data structures.

Functional programming II

- https://en.wikipedia.org/wiki/Persistent_data_structure
- https://en.wikipedia.org/wiki/Persistent_array
- What if I really need mutable data structure?
 - For example quick implementation of quicksort?
- No side effects
 - Functions only return values, no changes other changes.
 - For the same parameters, we always get the same result (referential transparency).
 - But, sometimes side effects can not be avoided (input output operations) how to solve that?

Functions with No Side Effects (1)

```
What are side effects, how do i recognise them?
  public double Add(double a, double b) {
      return a + b;
  }
  public double Add2(double a, double b) {
      try {
          Console.WriteLine($"a={a}, b={b}");
      } catch (Exception ex) { }
      return a + b:
  }
  public int Divide(int a, int b) {
      return a / b;
  ን
```

Marek Behálek (VSB-TUO)

Functions with No Side Effects (2)

```
How can I avoid them?
public int? Divide2(int a, int b) {
    if (b == 0)
        return null;
    return a / b;
}
public int Divide3(int a, NonZeroInteger b) {
    return a / b.Number;
}
```

```
public class NonZeroInteger {
   public int Number { get; }
   public NonZeroInteger(int number) {
      Number = number;
      if (number == 0)
        throw new ArgumentException();
   }
}
```

Expressions (1)


```
Lets start with data type Maybe
data Maybe a = Nothing | Just a
```

Now we want to compute some *expressions* where we use it like a value type.

Expressions (2)

```
Now we need to compute such expression
  eval :: Expr -> Maybe Int
  eval (Num x) = Just x
  eval (Div x y) = case eval x of
                      Nothing -> Nothing
                      Just x' \rightarrow case eval y of
                          Nothing -> Nothing
                          Just y' -> betterDiv x' y'
  eval (Add x y) = case eval x of
                      Nothing -> Nothing
                      Just x' \rightarrow case eval y of
                          Nothing -> Nothing
                          Just y' \rightarrow Just (x' + y')
```

• We can see emerging *patter*, how *actions* are *linked* one after the other.

Logging (1)

```
Lets have simple operations.
compute :: Int -> Int
compute x = x * x
```

```
isItEnough :: Int -> Bool
isItEnough x = x > 9
```

• We want then to compute values and *log* the context.

compute :: (Int, String) -> (Int, String)
compute (x, log) = (x * x, log ++ "Just square of x.")

isItEnough :: (Int, String) -> (Bool, String)
isItEnough (x, log) = (x > 9, log ++ "Compared to 9.")

It this a good solution? How to improve the quality of our solution?

Logging (2)


```
What if I want to add the new entry at the start of log?
compute :: Int -> (Int, String)
compute x = (x * x, "Just square of x.")
```

```
isItEnough :: Int -> (Bool, String)
isItEnough x = (x > 9, "Compared to 9.")
```

```
applyLog :: (a,String) -> (a -> (b,String)) -> (b,String)
applyLog (x,log) f = let (y,newLog) = f x in (y,log ++ newLog)
```

*Main> applyLog (applyLog (2,"Initial value 2.") compute) isItEnough (False,"Initial value 2.Just square of x.Compared to 9.")

*Main> (2,"Initial value 2.") `applyLog` compute `applyLog` isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

■ Is this the end? Can it be improved even further?

Monads - what a strange word.

• What if they can not be avoided?

For example input - output operations? inputInt :: Int

```
inputDiff = inputInt - inputInt
```

```
funny :: Int-> Int
funny n = inputInt + n
```

- Haskell uses programming with actions to solve this issue.
- Theoretically, we use *thinks* like Functor,

Applicative or Monad that comes from the category theory.

- For orthodox programmer, it is just some theory gibberish, for the others, it may provide interesting insight to the problem.
- Informally, a sort of pure functional envelop for non-pure actions.
- Practically, its a set of design patterns solving plenty of situations that are frequently occurring in practice.

IO Monad (1)

- This part is for programmers, that do not care about a theory.
- There is a special type () with only value () called *unit* type representing a sort of dummy value.
- All input and output *actions* can be recognized by having 10 in their type definition.
 - Input: getLine :: IO String
 - Output: putStr :: String -> IO ()
 - Usually, when we are talking about monads, we say, that they represents some sort of containers → better intuition for IO is: bake :: Recipe Cake.
- You can *glue* these actions by syntax construct: do.
- How to get value from/to IO?
 - There is a syntactic construct in do (called bind): x <- action, where if action :: IO a, then the type of variable x is a.</p>
 - There is a function return :: a -> IO a, it can be used to *put* a common value into IO.
- Finally, the function main has a type: main :: IO a
- And that is all, Is it clear?

IO Monad (2)

կլե

Simple example:

```
main = do
    putStrLn "Hello, what's your name?"
    name <- getLine
    let bigName = map toUpper name
    putStrLn ("Hey " ++ bigName ++ ", you rock!")</pre>
```

Now, we can compile it and execute.

```
PS C:\> ghc .\test.hs
[1 of 1] Compiling Main ( test.hs, test.o )
Linking test.exe ...
PS C:\> .\test.exe
Hello, what s your name?
Marek
Hey MAREK, you rock!
```

IO Monad (3)

կլլ

The construct do is just an expression, we can use it in the same way...

```
main = do
    line <- getLine
    if null line
        then return ()
        else do
            print $ reverseWords line
            main
reverseWords :: String -> String
reverseWords = unwords . map reverse . words
```

You should notice, that return does not end the function like in *common* languages. main = do a <- return "hell" b <- return "yeah!"</p>

```
putStrLn $ a ++ " " ++ b
```

IO Monad (4)

```
Interesting question, can we use high order functions with monad IO?
  mySequence :: [IO a] -> IO [a]
  mySequence [] = return []
  mySequence (ma:mas) = do
```

```
a <- ma
```

```
as <- sequence mas
return (a:as)
```

```
ghci> mySequence [getLine, getLine, getLine]
а
b
С
["a"."b"."c"]
```

Plenty of functions in: Control.Monad.

IO Monad (5)

For example forM (this is as close to for cycle as you can get in Haskell :-) import Control.Monad

```
main = do
    lines <- forM [1,2,3] (\a -> do
        putStrLn $ "Give me " ++ show a ++ " line."
        getLine)
    print lines
```

```
Give me 1 line.
Hello
Give me 2 line.
Haskell
Give me 3 line.
programmers
["Hello","Haskell","programmers"]
```

IO Monad (6)

- We can use 10 monad for working with files.
- For example we can start with: openFile :: FilePath -> IOMode -> IO Handle import System.IO

```
main = do
handle <- openFile "test.hs" ReadMode
contents <- hGetContents handle
putStr contents
hClose handle</pre>
```

But, there are plenty of other functions:

```
■ withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a
```

- readFile :: FilePath -> IO String
- writeFile :: FilePath -> String -> IO (), also appendFile

IO Monad (7)

```
• Haskell also have exceptions \rightarrow high order function:
  catch :: Exception e \Rightarrow IO a \rightarrow (e \Rightarrow IO a) \rightarrow IO a
  import System.IO
  import System.IO.Error
  main = toTry `catch` handler
  toTry :: IO ()
  toTry = do contents <- readFile "test.txt"</pre>
               putStrLn $ "Lines: " ++ show (length (lines contents))
  handler :: IOError \rightarrow IO ()
  handler e = putStrLn "Whoops, had some trouble!"

    Functions like isDoesNotExistError or isFullError to distinguish between exception.
```

IO Monad (8)

- System.Environment for example, for handling command line arguments: getArgs :: IO [String].
- System.Random also random numbers are part of monad IO, but here it is complicated.
 - We need to install package random: stack ghci --package random
 - Now we have:

```
random :: (RandomGen g, Random a) => g -> (a, g)
randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)
```

ghci> random (mkStdGen 1) :: (Bool, StdGen)
(True,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})
ghci> randomR (1,6) (mkStdGen 1)
(6,StdGen {unStdGen = SMGen 4999253871718377453 10451216379200822465})

- IO have also one random generator (getStdGen) stored inside \rightarrow we can use functions: randomIO, randomRIO.
- Be warned. All REAL programmers should stop reading NOW. We will continue with the theory behind monads so we can *outgrowth* the IO monad

Marek Behálek (VSB-TUO)

Monads in Haskell

Category Theory - why to study? We are programmers!

- Programming is based on math.
 - \blacksquare What kind of math? \rightarrow geometry, algebra, topology, set theory, type theory, \ldots
- There are different *kinds* of mathematics → even if developed independently, they share some ideas (for example Curry–Howard correspondence) → Category theory reveals how different kinds of structures are related to one another.
 - Category theory is a toolset for describing the general abstract structures in mathematics.
- Category theory is very well suited for programmers → things we normally do overlap with problems category theory is studying.
 - It deals with structure, omitting particulars (abstraction).
 - In its roots, it study composition → holy grail of programming (bigger blocks are composed from components) → composition is crucial in many programming paradigms.
- Haskell have been tapping category theory for a long time, but the ideas can be used also in other languages.

Category Theory - Basics (1)

T.				ī	
L	L	÷.	н	I	
I.	L	I	н	ł	
	1	I	2		

- *Category C* is algebraic structure consisting of:
 - collection of *objects* obj(C)
 - arrows (or morphisms or maps) hom(C)
 - $f: a \to b$ f is a morphism from a to b.
 - hom(a,b) hom-set denotes a set of morphisms from a to b.
- Also, we have a binary operation \circ called *composition* of morphisms.
 - For any three objects a, b and $c: \circ : hom(b, c) \times hom(a, b) \rightarrow hom(a, c)$.
 - For any pair of $f: a \to b$ and $g: b \to c$ there exists a composition (composite morphism) written as $g \circ f: a \to c$.
- *Identity*: For every object x, there exists a morphism $1_x : x \to x$ called the identity morphism for x, such that for every morphism $f : a \to b$, we have $1_b \circ f = f = f \circ 1_a$.
- Associativity: If $f: a \to b$, $g: b \to c$ and $h: c \to d$ then $h \circ (g \circ f) = (h \circ g) \circ f$.

Category Theory

Category Theory - Basics (2)

Figure: Are these schematics for categories?

Usually, a schematics for a category is a

multigraph where objects are verticies, and morphisms are oriented edges.

- When we are talking about categories in programming, most common example are types and functions.
 - For example our figure depicts functions:

f :: a -> b g :: b -> c

• Function $g \circ f$ can be defined as:

gf :: a -> c gf = \x -> g (f x)

Category Theory - Monoid

- Important algebraic structure in category theory is *monoid*.
 - Part of set theory, used even before the whole category theory thing \rightarrow we already know this term from set theory \rightarrow what is their relation?
- A set S with $*: S \times S \to S$ (multiplication) is a monoid M if it satisfies:
 - Associativity: For all a, b and c in S, the equation (a * b) * c = a * (b * c) holds.
 - Unit element: There exists an element e (unit) in S such that for every element a in S, the equalities e * a = a and a * e = a hold.
- An individual monoid (M, *, e) can be a category C where:
 - the collection of objects obj(C) is single object M;
 - the collection of morphisms hom(C) is set M itself, which mean, each element in set M is a morphism in category C;
 - the composition operation \circ of C is * since each morphism in C is element in M, the composition of morphisms is just the multiplication of elements;
 - $\hfill\blacksquare$ the identity morphism of C is unit element e
- In this way, since *M*,* and *e* satisfies the monoid laws, apparently the category laws are satisfied.

Monoid in Haskell (1)

- Stop this theory gibberish, what it has to do with mentioned practical examples?
- Let's define monoid in Haskell.

```
-- Data.Monoid
```

```
-- class Semigroup a => Monoid a where class Monoid m where
```

```
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
```

```
mconcat = foldr mappend mempty
```

• What about the rules for monoid?

 (This is embarrassing.) Haskell can not enforce them, programmer is kindly asked to obey them.

Monoid in Haskell (2)

Plenty of types are instances of Monoid.

```
instance Monoid [a] where
  mempty = []
  mappend = (++)

  All, Any, First, Last, Maybe, Ordering, IO, Sum, Product, ...
```

Do you remember our logging example? We can modify our logging function like this: applyLog :: (Monoid m) => (a,m) -> (a -> (b,m)) -> (b,m) applyLog (x,log) f = let (y,newLog) = f x in (y,log `mappend` newLog)

*Main> (2,"Initial value 2.") `applyLog` compute `applyLog` isItEnough
(False,"Initial value 2.Just square of x.Compared to 9.")

The result is the same, but **now**... (wait for it:-)

Monoid in Haskell (3)

• We can use the same function applyLog with all types that are instances of Monoid.

• Let's say, we want to log just some events.

*Main> (1,Nothing) `applyLog` addMore `applyLog` addMore `applyLog` addMore (4,Just "More!Nice.")

Is it better then before? We all agree that it is. Right ?!?

Functor (1)

Motivation

- Our original goal was to find some nice (design) patterns for frequently occurring problems.
- Lets say, we found one, what next? \rightarrow prepare abstract solution capturing the idea \rightarrow apply it to solve other problems.
- In terms of categories, this abstraction is captured by a category and we need to *transfer* it to other categories.
- Functor is a mapping between categories that preserve a structure \rightarrow it preserve identity morphisms and composition of morphisms.
- Let C and D be categories. A functor F from C to D is a mapping (function) that:
 - associates each x in obj(C) to an object F(X) in obj(D),
 - associates each morphism $f: X \to Y$ in C to a morphism $F(f): F(X) \to F(Y)$ in D such that the following two conditions hold:
 - $F(id_x) = id_{F(x)}$ for every x in obj(C),
 - $F(g \circ f) = F(g) \circ F(f)$ for all morphisms $f: X \to Y$ and $g: Y \to Z$ in C

Functor (2)

կլլ

But how to implement functors in Haskell?

- Lets say, we just want to add Maybe for capturing errors → We want to map our structure to Maybe category → We need a functor.
- First, we need to map *objects* (types) \rightarrow type constructor Maybe
- Second, we need to map *morphisms* (functions):

```
fmap :: (a \rightarrow b) \rightarrow (Maybe a \rightarrow Maybe b)
```

```
fmap f (Just x) = Just (f x)
```

fmap _ Nothing = Nothing

Functor (3)

- Let's try to generalize this approach. We introduce new type class: Functor
 -- (* -> *) -> Constraint
 class Functor f where
 -- \$:: (a -> b) -> a -> b
 fmap :: (a -> b) -> f a -> f b
- What is f in the definition? → A type constructor with kind * -> * and a method fmap.

• Kind in haskel is a type of the type.

*Main>	:kind Int
Int ::	*
*Main>	:kind Maybe
Maybe :	: * -> *

- Note, the result is similar to operator \$, we can even use it in the same way.
- There is even an operator: <\$> = fmap

Functor (4)

So, we can do:

```
*Main> (+1) $ (*2) $ (+3) $ 1 --looks good, but it's cheating...
9
*Main> (+1) `fmap` ((*2) `fmap` ((+3) `fmap` (Just 1)))
Just 9
*Main> (+1) <$> (*2) <$> (+3) <$> (Just 1) -- fmap on ->
Just 9
```

What about operations like +?

*Main> (+) <\$> (Just 1) -- Maybe (Int -> Int)

- Again, plenty of types are instances of Functor.
 - List [] here: fmap = map
 - ->, First, Last, Sum, Product, Min, Max, Identity, IO, ST a, Array i,...

Functor (5)

What about Either a b, can it be a functor?

```
-- * -> * -> *
data Either a b = Left a
| Right b
```

Not really, but Either a is OK!

```
instance Functor (Either a) where
  fmap _ (Left x) = Left x
  fmap f (Right y) = Right (f y)
```

■ When we are defining a function, we are using ->. What is it? Can it be a functor? How to define *fmap* then?

Functor (6)

- Again, programmer is kindly asked to obey them.
- It does not obey mentioned rules, but it will work.

data CMaybe a = CNothing | CJust Int a

instance Functor CMaybe where

fmap f CNothing = CNothing

```
fmap f (CJust counter x) = CJust (counter+1) (f x)
```

Endofunctor is a functor where the source and the target category is the same.

- Strictly speaking, the Functor class represents endofunctors on the category of Haskell types and functions.
- Endofunctors are interesting because they do a good job of representing structures inside categories that work for *any* object.

Monads in Haskell

Fun with functors I

- Are we done with functors? (NO! The fun barely started:-)
- Category of categories *Cat*
 - Functors can be composed: if we have $F: C \to D$ and $G: D \to E$ it is easy to define new functor $H: C \to E$ as $G \circ F$
 - We can always define an identity functor.
- Natural transformation defines a relation between functors. For $F : C \to D$ and $G : C \to D$, the natural transformation $\alpha : F \Rightarrow G$ is a family of morphisms (from D) where:
 - $\forall X \in obj(C)$, we pick a morphism $\alpha_X : F(X) \to G(X)$ in D (called the component of α_X at X.
 - $\forall f: X \to Y \in hom(C)$, $\alpha_Y \circ F(f) = G(f) \circ \alpha_X$ (naturality square or condition).

Fun with functors II

• Logical next step is: Category of functors [C, D] or D^C

- Objects $obj(D^C)$ are functors from C to D
- Morphisms $hom(D^C)$ are natural transformations between those functors.
- Identity $id_F: F \Rightarrow F$ maps each functor to itself.
- Composition of $\alpha: F \Rightarrow G$ and $\beta: G \Rightarrow H$ is $(\beta \circ \alpha): F \Rightarrow H$, defined as *composition* of morphisms in D:

 $(\beta \circ \alpha)_X : F(X) \Rightarrow H(X) = (\beta_X : G(X) \to H(X)) \circ (\alpha_X : F(X) \to G(X)$ (so they obey the associativity).

Fun with functors III

- If we use the same category, we get: Category of endofunctors C^C
 - Haskell functors are in fact endofunctors on category of types and functions. What will be a natural transformation? → Polymorphic function with type:

alpha :: F a -> G a -- for all a

- Note: Most such polymorphic functions are natural transformations.
- Note: We can not really change *the value*, just its *computational context*.

Example

safeHead	:: [a] -> Maybe	a
safeHead	[] = Nothing	
safeHead	(x:xs) = Just x	

```
*Main> (safeHead . fmap (+1)) [1]
Just 2
*Main> (fmap (+1) . safeHead) [1]
Just 2
```

What about the naturality square → It is always satisfied! (Nice:-). (alpha . fmap f) = (fmap f . alpha)

Monoidal Categories (1)

1				н	
н	н		н	I	
н	н	I	I	I	
	L	I	L	1	

- A product category $C \times D$ is a category where:
 - objects are pairs: (A, B) where $A \in obj(C), B \in obj(D)$
 - there is a morphisms $(f,g): (A_1,B_1) \to (A_2,B_2)$ for all pairs of morphisms: $f: A_1 \to A_2$ from C and $g: B_1 \to B_2$ from D
 - composition: $(f_2, g_2) \circ (f_1, f_2) = (f_2 \circ f_1, g_2 \circ g_1)$
 - identity: $1_{(A,B)} = (1_A, 1_B)$
- A **bifunctor** is the mapping from a product category $C \times D$ to category E, denoted: $F: C \times D \rightarrow E$.
 - Again in haskell it is implemented as $p: C \times C \rightarrow C$.
 - class Bifunctor p where
 - bimap :: $(a \rightarrow b) \rightarrow (c \rightarrow d) \rightarrow p a c \rightarrow p b d$
 - first :: $(a \rightarrow b) \rightarrow p a c \rightarrow p b c$

second :: (b \rightarrow c) \rightarrow p a b \rightarrow p a c

Good example is: Bifunctor Either or Bifunctor (,).

Monoidal Categories (2)

н			1	Ľ.
н	н			
н	н			
	L			

• A monoidal category (C, \otimes, I) is a category C equipped with:

- a bifunctor $\otimes : C \times C \to C$ called monoidal product or tensor product;
- an object *I* called (monoid, tensor) unit or identity object;
- moreover, it needs to be equipped with natural transformations to satisfy monoid laws:
 - **associator**: $\alpha_{X,Y,Z} : (X \otimes Y) \otimes Z \Rightarrow X \otimes (Y \otimes Z)$, where $X, Y, Z \in obj(C)$
 - left unitor: $\lambda_A : I \otimes A \Rightarrow A$ and right unitor: $\rho_A : A \otimes I \Rightarrow A$
- Category theory gives us a new way, how to define a monoid. If we have a monoidal category (C, \otimes, I) then any $M \in obj(C)$ with two morphisms:
 - $\mu: M \otimes M \to M$ (multiplication)
 - $\eta: I \to M$ (unit)
 - is a monoid.

Hold that thought, we will use right after applicative...

Applicative (1)

- On our path to monads, we can continue with different types of *monoidal functors*, but as programmers we have something more intuitive: *Applicative functor*.
 - Informally, monoidal functors are functors between two monoidal categories that preserves monoidal structure.
 - Applicative functors are the programming equivalent of lax monoidal functors with tensorial strength (if it means something:-).
 - Applicative functors allow for functorial computations to be sequenced (unlike plain functors), but don't allow using results from prior computations in the definition of subsequent ones (unlike monads).
- **Applicative functor** is a functor with the ability to apply functor-wrapped functions with functor-wrapped values. It is a functor with two

```
class Functor f => Applicative f where
```

```
pure :: a -> f a
```

Applicative (2)

- Again, it must preserve some additional rules.
 - Identity: pure id <*> v = v
 - Composition: pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
 - Homomorphism: pure f <*> pure x = pure (f x)
 - Interchange: u <*> pure y = pure (\$ y) <*> u

• We can notice, that if we have a type from Applicative, we have also Functor

```
fmap f x = (pure f) <*> x
instance Applicative Maybe where
pure x = Just x
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing
```

```
*Main> (Just (+)) <*> (Just 1) <*> (Just 2)
Just 3
*Main> (+) <$> (Just 1) <*> (Just 2)
Just 3
```

Monads - Category Way (1)

- \blacksquare We defined a monoidal category \rightarrow but endofunctor in a endofunctor category can be monoidal too.
 - Such Monoid in the category of endofunctors is a **monad**.
- Formally, for category C, a monad F is an endofunctor $F: C \to C$ equipped with two natural transformations:
 - monoid multiplication \odot or μ : \odot : $F(F) \Rightarrow F$ (for clarity denotated: $F \odot F \Rightarrow F$) for each $X \in obj(C)$, \odot maps $F(F(X) \rightarrow F(X)$;
 - monoid unit η , $\eta : 1_C \Rightarrow F$, 1_C is in fact identity functor, $\forall X \in C : 1_C(X) = X$, so η is in fact mapping: $X \to F(X)$.
 - Moreover, it preserve following rules:
 - Associativity preservation $\alpha : (F \odot F) \odot F \equiv F \odot (F \odot F)$
 - Left unit preservation $\lambda : \eta \odot F \equiv F$
 - $\blacksquare \ {\rm Right \ unit \ preservation} \ \rho: F \equiv F \odot \eta$
- So, now is the moment when the theory should compose together and shine:-)

Monads - Category Way (2)

- **1** Haskell type class Functor represents in fact *endofunctors* on category of Haskell types and functions (H). We can define a *category of endofunctors* H^H .
- **2** In this category, objects are *instances* of Functor (for example F and G) and morphisms are natural transformations between then \rightarrow they are polymorphic functions:

alpha :: F a -> G a

- 3 If we want to make our category H^H a monoidal category, we need to introduce a tensor product $(H^H \times H^H) \rightarrow H^H$ and tensor unit (object from H^H). One natural way to do that, is to define:
 - tensor product as **composition** of endofunctors: $F \circ G$ (it is associative);
 - tensor unit as identity endofunctor: *Id*.
- **4** To define a monoid based H^H on we need to pick an object endofunctor T along with two morphisms (natural transformations in H):
 - $\blacksquare \ \mu: T \otimes T \to T$ function: join :: T (T a) -> T a
 - $\eta: I
 ightarrow M$ (unit) function return :: a -> T a
- **5** Finally, such endofunctor T is a monad! \rightarrow It is a monoid in the category of endofunctors.

Monads - Programmers Way (1)

- New functions are produced like a composition of functions → important abstraction mechanism. (.) :: (b -> c) -> (a -> b) -> a -> c
- The ordering of functions does not matter, we can introduce:

(>.>) :: $(a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$

• We want to have something similar to that for our Functor class. How the functions from our examples looked liked?

eval :: Expr -> Maybe Int

compare :: Int -> Maybe Bool

- So, to be able to compose such functions, we need something like: (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- Consider, we have an operator >>= (bind): (>>=) :: m a -> (a -> m b) -> m b
- Then it is easy, operator >=> (Fish operator, Klesli category) can be defined as:

f (>=>) g =
$$\setminus$$
 a -> let mb = f a

Monads - Programmers Way (2)

- OK, we have eliminated some unnecessary staff, but we still need: (>>=) :: m a -> (a -> m b) -> m b, right?
- That is precisely how monads are defined in Haskell.

class Applicative f => Monad f where
(>>=) :: f a -> (a -> f b) -> f b
return :: a -> f a

Again, if we have Monad, we also have Functor and Applicative. The prove, is not that obvious as before.

fmap fab ma = ma >>= (\x -> return (fab x)) -- (return.fab)
pure a = return a
mfab <*> ma = mfab >>= (\ fab -> ma >>= (return . fab))

Monads - Programmers Way (3)

Alternatively, if we want to define >>= and we know that f is a Functor. Bind operator can be defined:

```
(>>=) :: f a -> (a -> f b) -> f b
ma >>= f = join (fmap f ma)
-- in API: join :: Monad m => m (m a) -> m a
join :: m (m a) -> m a
```

- So, in theory a monad can be also defined by functions: join and $return \rightarrow Wait$, that's our μ and η morphisms in monad definition. \rightarrow That's precisely where we ended up following the category theory!
- We can easily define =<< that just swaps the parameters of bind:

Programming with actions (1)

Now, we can chain actions better.

```
*Main> (Just 1) >>= (\x-> return (x+1))
Just 2
*Main> (Just (+)) >>= (\y -> Just (y 1 2)) >>= (\x -> return (x+1))
Just 4
*Main> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Just "3!"
*Main> Just 3 >>= \x -> Just "!" >>= \y -> Just (show x ++ y)
Just "3!"
```

We can even solve our original problem!

Programming with actions (2)

Т				T.
н	н	2	п	н
н	н	L	н	н
	I.	L	L	

Solving *maybe* expressions with *monads*.

```
eval :: Expr -> Maybe Int
eval (Num x) = return x
eval (Div x y) = eval x >>= (x' -> eval y >>= (y' -> betterDiv x' y'))
eval (Add x y) = eval x >>= x' \rightarrow eval y \rightarrow v' \rightarrow return (x'+ v')
eval (Mul x y) = eval x >>=
                  x' \rightarrow eval y >>=
                  \y' -> return ( x'* y')
eval (Sub x y) = do x' <- eval x
                      v' <- eval v
                      return ( x'- y')
```

List Monad (1)


```
Nice example of a monad is the list.
  Informally, required operations are
  implemented:
  mvFmap :: (a -> b) -> [a] -> [b]
  myFmap = map
  myApply :: [a -> b] -> [a] -> [b]
  mvApply fs xs = [f x | f < -fs, x < -xs]
  myBind :: [a] -> (a -> [b]) -> [b]
  myBind xs f = concat (map f xs)
Now, we can observe, what we can do
```

with such defined operators.

IO Monad - just to remind you

- In previous part, we have introduced a mechanism how *actions* can be chained \rightarrow nicer way how to write it.
- But we have started with the idea, that impure actions (manipulating with state) will be solved with monads.
- We already know IO Monad that solves input output operations.

```
-- inputLine :: String
getLine :: IO String
putStr :: String -> IO ()
do x <- getLine
   putStr x -- y <- putStr x, y == ()
ready :: IO Bool
ready = do c <- getChar
        return (c == 'y')</pre>
```

State Monad (1)

- How does it work? The idea is captured in more general monad that captures state.
- Lets first focuse on the idea → state manipulation can be captured like a function taking original state and producing a pair (some value, new state).

```
type SimpleState s a = s -> (s, a)
```

```
retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)
```

Now, lets create a simple input containing a list of integers (our state is just this list). type ListInput a = SimpleState [Int] a

```
readInt :: ListInput Int
readInt stateList = (tail stateList, head stateList)
```

State Monad (2)

Finally, lets try to make a function chaining actions (like >>=).
bind :: (s -> (s,a)) -- SimleState s a

-> (a -> (s -> (s, b))) -- a -> SimpleState s b
-> (s -> (s, b)) -- SimpleState s b

bind step makeStep oldState = -- Why 3 parameters?

let (newState, result) = step oldState
in (makeStep result) newState

Finally, we can bind actions as with monads.

*Main> (readInt `bind` \a->readInt `bind` (\b->retSt (a+b))) [1,2,3]
([3],3)

In our example, we have created a function defining what to do with the input. When it is executed it *bakes* the result. If provided the same *ingredients*, it *bakes* the same result.

State Monad (3)

```
• What if we want to realy make it a part of Monad type class (it will not work for type
  synonym)?
  newtype State s a = State { runState :: s -> (s, a) }
  readInt' :: State [Int] Int
  readInt' = State {runState = \s->(tail s, head s)}
  instance Functor (State s) where
      fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)
  instance Applicative (State s) where
      pure a = State (\s->(s,a))
      f <*> m = State $ \s-> let (s'.f') = runState f s
                                   (s'',a) = runState m s' in (s'',f' a)
```

instance Monad (State ${\tt s}$) where

return a = State (\s->(s,a))
m >>= k = State \$ \s -> let (s',a) = runState m s in runState (k a) s'

State Monad (4)

```
We can even use do syntax now.
add :: State [Int] Int
add = do x<-readInt'
y<-readInt'
return (x+y)
```

Examples, how to use this state monad:

```
*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
([3],3)
*Main> runState add [1,2,3]
([3],3)
```

Finally, assuming we have RealWorld, we ca define type IO as: type IO a = State RealWorld a --getChar :: RealWorld -> (RealWorld, Char) --main :: RealWorld -> (RealWorld, ())

Stacking Monads (1)

- What if we want to use several monads → We want to use state and Maybe → monad transformers (Control.Monad.Trans).
- For example, we will use wrapper: newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) } instance Monad m => Monad (MaybeT m) where return = MaybeT . return . Just -- (>>=) :: MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b x >>= f = MaybeT\$ do maybe_value <- runMaybeT x</pre> case maybe_value of Nothing -> return Nothing Just value -> runMaybeT \$ f value

Stacking Monads (2)

- For practical purposes, we need *lift* function it promotes base monad computations to combined monad.
 - It is similar to liftM :: Monad m => (a -> b) -> (m a -> m b) method for combined monad.
- For example, we will use wrapper:

```
class MonadTrans t where
lift :: (Monad m) => m a -> t m a
```

```
instance MonadTrans MaybeT where
lift = MaybeT . (liftM Just)
```

Stacking Monads (3)

Example:

```
import Control.Monad.Trans.Maybe
import Control.Monad.IO.Class (liftIO)
import Text.Read
```

data Person = Person {name::String, age::Int} deriving Show

```
askPersonT :: MaybeT IO Person
askPersonT = do
name <- liftIO $ putStr "Name? " >> getLine
age <- MaybeT $ fmap readMaybe $ putStr "Age? " >> getLine
return $ Person name age
```

Arrays in Haskell

- Like in other languages Haskell has arrays.
- Arrays (where we can get i^{th} element in O(1)) are best choice for some algorithms.
- Boxed (non-strict) arrays support lazy evaluation.
- Unboxed (strict) just values, only basic types, closer to *memory block*.
- Arrays are in package *array*.

	Immutable	IO monad	ST monad	
	instance IArray a e	instance MArray a e IO	instance MArray a e ST	
Boxed	Array	IOArray	STArray	
	DiffArray			
Unboxed	UArray	IOUArray	STUArray	
	DiffUArray	StorableArray		

Table: Comparison of an different arrays in Haskell

Immutable Array (1)

- Immutable arrays are in modules: Data.Array or Data.Array.IArray
- All these *arrays* use the same indexing.

class (Ord	a) => Ix a where
range	:: (a,a) -> [a]
index	:: (a,a) a -> Int
inRange	:: (a,a) -> a -> Bool

Then (based on imported array type), we create an array: array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b listArray :: Ix i => (i, i) -> [e] -> Array i e

```
squares = array (1,100) [(i, i*i) | i <- [1..100]]
listToArray = listArray (0,5) [8,4,9,6,7,1]</pre>
```

Immutable Array (2)

Accessing arrays (works also for IArray):

(!) :: (Array a e, Ix i) => a i e -> i -> e bounds :: (Array a e, Ix i) => a i e -> (i, i) indices :: (Array a e, Ix i) => a i e -> [i] elems :: (Array a e, Ix i) => a i e -> [e]

Incremental array updates (works also for IArray):
 (//) :: (Array a e, Ix i) => a i e -> [(i, e)] -> a i e

ghci> listArray (0,5) [8,4,9,6,7,1] // [(1,0),(2,0)]
array (0,5) [(0,8),(1,0),(2,0),(3,6),(4,7),(5,1)]

Derived arrays (amap requires IArray): amap :: (IArray a e', IArray a e, Ix i) => (e'->e) -> a i e' -> a i e ixmap :: (Array a e, Ix i, Ix j) => (i, i) -> (i->j) -> a j e -> a i e

Mutable Array (1)

կլե

Class of mutable array types:

class Monad m => MArray a e m ... --array: (a i e), index: Ix i

- We need a monad to preserve a state: ST s or IO.
- Constructing mutable arrays: newArray :: (MArray a e m, Ix i) => (i, i) -> e -> m (a i e) newListArray :: (MArray a e m, Ix i) => (i, i) -> [e] -> m (a i e)
- Reading and writing mutable arrays: readArray :: (MArray a e m, Ix i) => a i e -> i -> m e writeArray :: (MArray a e m, Ix i) => a i e -> i -> e -> m ()
- Derived arrays

Mutable Array (2)

Deconstructing mutable arrays:

getBounds :: (MArray a e m, Ix i) => a i e -> m (i, i)
getElems :: (MArray a e m, Ix i) => a i e -> m [e]
getAssocs :: (MArray a e m, Ix i) => a i e -> m [(i, e)]

- Conversions between mutable and immutable arrays: freeze :: (Ix i, MArray a e m, IArray b e) => a i e -> m (b i e) thaw :: (Ix i, IArray a e, MArray b e m) => a i e -> m (b i e)
- Let's use monad ST to preserve the state.
- Now, we have: data STArray s i e, it will be an instance of MArray (STArray s) e (ST s)
- Safe way to create and work with mutable array: runSTArray :: (forall s. ST s (STArray s i e)) -> Array i e It will return immutable array at the end (it will thaw the original array).

Mutable Array (3)

```
Example how to use mutable array:
 modify :: Array Int Int -> Array Int Int
 modify inputArray = runSTArray $ do
      let end = (snd . bounds) inputArray
      stArray <- thaw inputArray
      forM_ [1 .. end] $ \i -> do
          val <- readArray stArray i
          when (val<0) $ do
              writeArray stArray i 0
      return stArray
```

```
ghci> modify $ listArray (0,3) [8,-4,-9,1]
array (0,3) [(0,8),(1,0),(2,0),(3,1)]
```


- In Haskell, monads are a *sort of* functional envelop for *in-pure* functions.
- Functions like *bind*, *join* or *fmap* allows us to work with these monads.
 - On the first sight, we can recognize a function working with input/output \rightarrow it will have IO in the type definition.
 - We can use the *same* design patterns for *all* monads.
- Strictly speaking, we can forget all about the theory and just use do if it is a monad.

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

November 4, 2022

VSB TECHNICAL | FACULTY OF ELECTRICAL UNIVERSITY | ENGINEERING AND COMPUTER OF OSTRAVA | SCIENCE