VSB TECHNICKA VSB TECHNICAL
” ” UNIVERZITA “ ” UNIVERSITY
OSTRAVA [" oF osTRAVA

www.vsb.cz

Conclusion - topics that were not properly addressed, yet.

behalek.cs.vsb.cz/wiki/Functional Programming

Marek Béhalek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
OF OSTRAVA | SCIENCE SCIENCE

Lambda calculus
Reasoning about programs Lazy evaluation

Marek Behalek (VSB-TUO) Practical Functional Programming 1/11

Reasoning about programs |||||

m OK, functional languages have mathematical background, but is this any good for me (|
am a programmer, not mathematician;-)?

m Formal definition of language semantic allows to prove program's properties — more
trustworthy then just some tests.

m Emended systems, automotive, ...
m Tools: Formal proof management system Coq https://coq.inria.fr/ — based on
richly-typed functional programming language Gallina

m CompCert - verification of C programs
m Extract certified programs to Haskell

m Mathematical induction (informally)

m Prove for n = 0 (base case)
m On assumption that it holds for n, prove that it holds for n+1

m Principle of structural induction for lists — we want to prove property P

m Base case — prove P for [] outright.
m Prove P for (x:xs) on assumption that P holds for xs.

Marek Behalek (VSB-TUO) Practical Functional Programming 2/11

https://coq.inria.fr/

Reasoning about programs

Reasoning about programs - Example (1) |||||

m We want to prove: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

m We start with equations from the source code.
[] ++ ys = ys !
(x:xs) ++ ys = x: (xs ++ ys) -— ++.2

= Now we can start proving (using mathematical induction).
--a) [=>xs
([1 ++ ys) ++ zs
= ys ++ zs -- ++.1

[T ++ (ys ++ zs) -- ++.1

-- b) (x:xs) => xs

((x:xs)++ys)++zs

= x: (xs++ys)++zs - ++.2
= x: ((xs++ys)++zs) -- ++.2
= x:(xs++(ys++zs)) -- assumption
= (x:xs)++(ys++zs) -- ++.2

Marek Behalek (VSB-TUO) Practical Functional Programming 3/11

Reasoning about programs - Example (2) |||||

m Better example: (length (xs++ys) = length xs + length ys

m We start with equations from the source code.
length [] =0 --len.1
length (_:xs) = 1 + length xs --len.2

= Now we can start proving (using mathematical induction).
--a) [=>xs
length ([] ++ ys)
= length ys -- ++.1

0 + length ys -- + zero element

length [] + length ys -- len.1

-- b) (x:x8) => xs

length ((x:xs) ++ ys)

= length (x:(xs++ys) -— ++.2

= 1 + length (xs++ys) -- len.2

= 1 + (length xs + length ys) -- assumption)

= (1 + length xs) + length ys -- associativity of +
= length (x:xs) + length ys -- len.2

Marek Behalek (VSB-TUO) Practical Functional Programming 4/11

Lambda calculus | |||||

m)\ — calculus is a formal system in mathematical logic for expressing computation based
on function abstraction and application using variable binding and substitution (wiki).

m |t was invented in 1930s by Alonzo Church.
= Universal model of computation, as good as Turing machine — all that can be compute

by Turing machine can be expressed in A\ — calculus — roughly, this corresponds to
problems that can be solved by a computer.

= Omitting many details, theoretical background for all functional programming languages.

m Originally A — calculus is untyped — in programming we need types — not that easy to
add them.

Marek Behalek (VSB-TUO) Practical Functional Programming 5/11

Lambda calculus

Lambda calculus - simplified definition |||||

m Syntax (how it is written) - a lambda term is:
m z,y,z... - variables, representing a parameter or mathematical/logical value.
m (\z.M) - abstraction, M is a lambda term, the variable 2 becomes bound in the expression.
m (MN) - application, applying a function to an argument. M and N are lambda terms.

m Semantics (how to compute it)

B o — conversion : (Ax.M[z]) = (Ay.M|[y]) - renaming the bound variables in the
expression. Used to avoid name collisions.

m 3 —reduction : (Ax.M)E) — (M|x := E]) -replacing the bound variables with the
argument expression in the body of the abstraction (this really moves forward the
computation).

m 1 — reduction : ((Az.fx) — f - expresses the idea of extensionality (two functions are the
same if and only if they give the same result for all arguments).

Marek Behalek (VSB-TUO) Practical Functional Programming 6 /11

Lambda calculus

Lambda calculus - normal form |||||

m Redex - Reducible Expression - expression that can be reduced with defined rules.
m o —redex, S — redex

Church—Rosser theorem - when applying reduction rules to terms, the ordering in which
the reductions are chosen does not make a difference to the eventual result.

m In other words, if there are two distinct reductions or sequences of reductions that can be
applied to the same term, then there exists a term that is reachable from both results.
= Normal form - expression that contains no 8 — redex.
m 42, (2, "hello"), \x -> (x + 1)

m Haskell uses weak head normal form - stops when head is a lambda abstraction or a
data constructor.

m (1 +1,2+2),\x ->2+2,'h" : ("e" ++ "11o0").

m The question that remains is, how do we get the weak head normal form?

Marek Behalek (VSB-TUO) Practical Functional Programming 7/11

Lazy evaluation

Lazy evaluation - what are our option for evaluation strategies? |||||

m When choosing an evaluation strategy for expressions in languages like Haskell, what are
key factors?
m Evaluation order - which reductions are performed first (inner-most, outer-most)
m How do we pass parameters to a function - by value, by name, by reference, by need...
m Function f is strict when and only when: f1 = L
m Strict evaluation - function's arguments are evaluated completely before the function is
applied.
® innermost reduction, eager evaluation or greedy evaluation
m Sometime also Call by value - it requires strict evaluation, arguments are passed as
evaluated values.
m It is used by most programming languages: Java, C#, F#, OCalm, Scheme...
m Non-strict evaluation - a function may return a result before all of its arguments are fully
evaluated.
m outer-most reduction, normal order evaluation (does not evaluate any of the arguments
until they are needed in the body of the function).

Marek Behalek (VSB-TUO) Practical Functional Programming 8 /11

Lazy evaluation (1) |||||

Lazy evaluation - When we are lazy enough, to call our evaluation lazy?

m Sub-expressions will be evaluated only when they are needed for in evaluation.
m If they are evaluated, they are evaluated only once.

m |n pure functional languages, if we use outer-most reduction, we are doing normal order
evaluation — only needed sub-expressions are evaluated, only needed arguments are
evaluated.

m In pure functional languages, to be lazy enough, all we need is some clever way, how to
pass arguments — call by need.

m Used in Haskell, option in OCalm, Scheme, some languages simulate lazy behaviour for
some sub-systems.

m In pure functional languages, the terms lazy evaluation, call by need, or non-strict
evaluation mean the same thing.

Marek Behalek (VSB-TUO) Practical Functional Programming 9/11

Lazy evaluation (2) |||||

m Eager evaluation
square (1+2)
square(3)

3%3
9

m Lazy evaluation
square (1+2)
let x = 1+2 in x*x
let x = 3 in x*x
3*3
9

Marek Behalek (VSB-TUO) Practical Functional Programming 10 /11

Advantages of Lazy evaluation |||||

m If an expression has a normal form, it will be reached by lazy evaluation strategy (theory
nonsense:-).

m It allows to use new concepts, like infinite structures or functions — new way how to
solve a problem (i still wont use it:-).
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
m It is useful when processing (large) data (LINQ, Apache Spark,..)
m Consider following example:
map (\x->x"4) (concat (map (\x->[1..x]) [1..101))

= Will be the intermediate results constructed?

m In fact, we are continually getting items from the final list!
m How the equivalent in C4++ will look like?

m We need to sacrifice code clarity, or all intermediate results will be computed before we get
some result.

Marek Behalek (VSB-TUO) Practical Functional Programming 1 /11

Lazy evaluation

Thank you for your attention

Marek Bé&halek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

	Reasoning about programs
	Lambda calculus
	Lazy evaluation

