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Reasoning about programs

Reasoning about programs

OK, functional languages have mathematical background, but is this any good for me (I
am a programmer, not mathematician;-)?
Formal definition of language semantic allows to prove program’s properties → more
trustworthy then just some tests.

Emended systems, automotive, ...
Tools: Formal proof management system Coq https://coq.inria.fr/ → based on
richly-typed functional programming language Gallina

CompCert - verification of C programs
Extract certified programs to Haskell

Mathematical induction (informally)
Prove for n = 0 (base case)
On assumption that it holds for n, prove that it holds for n+1

Principle of structural induction for lists – we want to prove property P
Base case – prove P for [] outright.
Prove P for (x:xs) on assumption that P holds for xs.
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Reasoning about programs

Reasoning about programs - Example (1)

We want to prove: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

We start with equations from the source code.
[] ++ ys = ys -- ++.1
(x:xs) ++ ys = x: (xs ++ ys) -- ++.2

Now we can start proving (using mathematical induction).
-- a) [] => xs
([] ++ ys) ++ zs
= ys ++ zs -- ++.1
= [] ++ (ys ++ zs) -- ++.1
-- b) (x:xs) => xs
((x:xs)++ys)++zs
= x:(xs++ys)++zs -- ++.2
= x:((xs++ys)++zs) -- ++.2
= x:(xs++(ys++zs)) -- assumption
= (x:xs)++(ys++zs) -- ++.2
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Reasoning about programs

Reasoning about programs - Example (2)

Better example: (length (xs++ys) = length xs + length ys
We start with equations from the source code.
length [] = 0 --len.1
length (_:xs) = 1 + length xs --len.2

Now we can start proving (using mathematical induction).
-- a) [] => xs
length ([] ++ ys)
= length ys -- ++.1
= 0 + length ys -- + zero element
= length [] + length ys -- len.1
-- b) (x:xs) => xs
length ((x:xs) ++ ys)
= length (x:(xs++ys) -- ++.2
= 1 + length (xs++ys) -- len.2
= 1 + (length xs + length ys) -- assumption)
= (1 + length xs) + length ys -- associativity of +
= length (x:xs) + length ys -- len.2
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Lambda calculus

Lambda calculus I

λ− calculus is a formal system in mathematical logic for expressing computation based
on function abstraction and application using variable binding and substitution (wiki).

It was invented in 1930s by Alonzo Church.

Universal model of computation, as good as Turing machine → all that can be compute
by Turing machine can be expressed in λ− calculus → roughly, this corresponds to
problems that can be solved by a computer.
Omitting many details, theoretical background for all functional programming languages.

Originally λ− calculus is untyped → in programming we need types → not that easy to
add them.
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Lambda calculus

Lambda calculus - simplified definition

Syntax (how it is written) - a lambda term is:
x, y, z... - variables, representing a parameter or mathematical/logical value.
(λx.M) - abstraction, M is a lambda term, the variable x becomes bound in the expression.
(MN) - application, applying a function to an argument. M and N are lambda terms.

Semantics (how to compute it)
α− conversion : (λx.M [x]) → (λy.M [y]) - renaming the bound variables in the
expression. Used to avoid name collisions.
β − reduction : ((λx.M)E) → (M [x := E]) -replacing the bound variables with the
argument expression in the body of the abstraction (this really moves forward the
computation).
η − reduction : ((λx.fx) → f - expresses the idea of extensionality (two functions are the
same if and only if they give the same result for all arguments).
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Lambda calculus

Lambda calculus - normal form

Redex - Reducible Expression - expression that can be reduced with defined rules.
α− redex, β − redex

Church–Rosser theorem - when applying reduction rules to terms, the ordering in which
the reductions are chosen does not make a difference to the eventual result.
In other words, if there are two distinct reductions or sequences of reductions that can be
applied to the same term, then there exists a term that is reachable from both results.
Normal form - expression that contains no β − redex.

42, (2, "hello"), \x -> (x + 1)

Haskell uses weak head normal form - stops when head is a lambda abstraction or a
data constructor.

(1 + 1, 2 + 2), \x -> 2 + 2,'h' : ("e" ++ "llo").

The question that remains is, how do we get the weak head normal form?
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Lazy evaluation

Lazy evaluation - what are our option for evaluation strategies?

When choosing an evaluation strategy for expressions in languages like Haskell, what are
key factors?

Evaluation order - which reductions are performed first (inner-most, outer-most)
How do we pass parameters to a function - by value, by name, by reference, by need...

Function f is strict when and only when: f⊥ = ⊥
Strict evaluation - function’s arguments are evaluated completely before the function is
applied.

innermost reduction, eager evaluation or greedy evaluation
Sometime also Call by value - it requires strict evaluation, arguments are passed as
evaluated values.
It is used by most programming languages: Java, C#, F#, OCalm, Scheme...

Non-strict evaluation - a function may return a result before all of its arguments are fully
evaluated.

outer-most reduction, normal order evaluation (does not evaluate any of the arguments
until they are needed in the body of the function).
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Lazy evaluation

Lazy evaluation (1)

Lazy evaluation - When we are lazy enough, to call our evaluation lazy?
Sub-expressions will be evaluated only when they are needed for in evaluation.
If they are evaluated, they are evaluated only once.

In pure functional languages, if we use outer-most reduction, we are doing normal order
evaluation → only needed sub-expressions are evaluated, only needed arguments are
evaluated.
In pure functional languages, to be lazy enough, all we need is some clever way, how to
pass arguments → call by need.

Used in Haskell, option in OCalm, Scheme, some languages simulate lazy behaviour for
some sub-systems.

In pure functional languages, the terms lazy evaluation, call by need, or non-strict
evaluation mean the same thing.
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Lazy evaluation

Lazy evaluation (2)

Eager evaluation
square(1+2)
square(3)
3*3
9

Lazy evaluation
square(1+2)
let x = 1+2 in x*x
let x = 3 in x*x
3*3
9
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Lazy evaluation

Advantages of Lazy evaluation

If an expression has a normal form, it will be reached by lazy evaluation strategy (theory
nonsense:-).
It allows to use new concepts, like infinite structures or functions → new way how to
solve a problem (i still wont use it:-).
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
It is useful when processing (large) data (LINQ, Apache Spark,..)

Consider following example:
map (\x->x^4) (concat (map (\x->[1..x]) [1..10]))
Will be the intermediate results constructed?
In fact, we are continually getting items from the final list!
How the equivalent in C++ will look like?

We need to sacrifice code clarity, or all intermediate results will be computed before we get
some result.
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Lazy evaluation

Thank you for your attention
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