$$
\begin{aligned}
& \text { vŠB TECHNICKÁ } \\
& \left.\right|_{\mid} \left\lvert\, \begin{array}{l}
\text { UNIVERZITA } \\
\text { OSTRAVA }
\end{array}\right.
\end{aligned}
$$

VSB TECHNICAL

$$
\|_{\|} \left\lvert\, \begin{aligned}
& \text { UNIVERSITY } \\
& \text { OF OSTRAVA }
\end{aligned}\right.
$$

WWW.vsb.cz

Conclusion - topics that were not properly addressed, yet.

 behalek.cs.vsb.cz/wiki/Functional_Programming
Marek Běhálek

VSB - Technical University of Ostrava
marek.behalek@vsb.cz
December 5, 2022

1 Reasoning about programs
2 Lambda calculus
3 Lazy evaluation

- OK, functional languages have mathematical background, but is this any good for me (l am a programmer, not mathematician;--)?
- Formal definition of language semantic allows to prove program's properties \rightarrow more trustworthy then just some tests.
- Emended systems, automotive, ...
- Tools: Formal proof management system Coq https://coq.inria.fr/ \rightarrow based on richly-typed functional programming language Gallina
- CompCert - verification of C programs
- Extract certified programs to Haskell
- Mathematical induction (informally)
- Prove for $\mathbf{n}=\mathbf{0}$ (base case)
- On assumption that it holds for \mathbf{n}, prove that it holds for $\mathbf{n}+\mathbf{1}$
- Principle of structural induction for lists - we want to prove property \mathbf{P}
- Base case - prove \mathbf{P} for [] outright.
- Prove \mathbf{P} for ($\mathrm{x}: \mathrm{xs}$) on assumption that \mathbf{P} holds for xs .

Reasoning about programs - Example (1)

■ We want to prove: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

- We start with equations from the source code.
[] ++ ys = ys

$$
\text { -- ++. } 1
$$

$$
(x: x s)++y s=x:(x s++y s)
$$

$$
--++.2
$$

- Now we can start proving (using mathematical induction).
-- a) [] => xs
([] ++ ys) ++ zs
$=\mathrm{ys}++\mathrm{zs} \quad--++.1$
$=[]++(y s++z s)--++.1$
-- b) (x:xs) => xs
($\mathrm{x}: \mathrm{xs}$) ++ys) ++zs
$=\mathrm{x}:(\mathrm{xs}++\mathrm{ys})++\mathrm{zs} \quad--++.2$
$=\mathrm{x}:((\mathrm{xs}++\mathrm{ys})++\mathrm{zs}) \quad--++.2$
$=\mathrm{x}:(\mathrm{xs}++(\mathrm{ys}++\mathrm{zs}))$-- assumption
$=(\mathrm{x}: \mathrm{xs})++(\mathrm{ys}++\mathrm{zs}) \quad--++.2$

Reasoning about programs - Example (2)

■ Better example: (length (xs++ys) = length xs + length ys

- We start with equations from the source code.
length []
= 0
--len. 1
length (_:xs) = 1 + length xs --len. 2
- Now we can start proving (using mathematical induction).

```
-- a) [] => xs
length ([] ++ ys)
= length ys -- ++. 1
\(=0\) + length ys -- + zero element
= length [] + length ys -- len. 1
-- b) (x:xs) => xs
length ((x:xs) ++ ys)
\(=\) length ( \(x:(x s++y s)\)
-- ++. 2
\(=1\) + length (xs++ys) -- len. 2
\(=1+(l e n g t h\) xs + length ys) -- assumption)
\(=(1+\) length xs) + length ys -- associativity of +
\(=\) length (x:xs) + length ys -- len. 2
```

- λ - calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution (wiki).
- It was invented in 1930s by Alonzo Church.

■ Universal model of computation, as good as Turing machine \rightarrow all that can be compute by Turing machine can be expressed in λ-calculus \rightarrow roughly, this corresponds to problems that can be solved by a computer.
■ Omitting many details, theoretical background for all functional programming languages.

- Originally λ - calculus is untyped \rightarrow in programming we need types \rightarrow not that easy to add them.
- Syntax (how it is written) - a lambda term is:
- $x, y, z \ldots$ - variables, representing a parameter or mathematical/logical value.

■ ($\lambda x . M)$ - abstraction, M is a lambda term, the variable x becomes bound in the expression.

- (MN) - application, applying a function to an argument. M and N are lambda terms.
- Semantics (how to compute it)
- α-conversion : $(\lambda x . M[x]) \rightarrow(\lambda y . M[y])$ - renaming the bound variables in the expression. Used to avoid name collisions.
- β - reduction : $((\lambda x . M) E) \rightarrow(M[x:=E])$-replacing the bound variables with the argument expression in the body of the abstraction (this really moves forward the computation).
- η-reduction : $((\lambda x . f x) \rightarrow f$ - expresses the idea of extensionality (two functions are the same if and only if they give the same result for all arguments).

■ Redex - Reducible Expression - expression that can be reduced with defined rules.

- α-redex, β - redex
- Church-Rosser theorem - when applying reduction rules to terms, the ordering in which the reductions are chosen does not make a difference to the eventual result.
- In other words, if there are two distinct reductions or sequences of reductions that can be applied to the same term, then there exists a term that is reachable from both results.
- Normal form - expression that contains no β - redex.

■ 42, (2, "hello"), \x -> (x + 1)
■ Haskell uses weak head normal form - stops when head is a lambda abstraction or a data constructor.

■ (1 + 1, $2+2), \backslash x->2+2, ' h ':(" e "++~ " l l o ")$.

- The question that remains is, how do we get the weak head normal form?
- When choosing an evaluation strategy for expressions in languages like Haskell, what are key factors?
- Evaluation order - which reductions are performed first (inner-most, outer-most)
- How do we pass parameters to a function - by value, by name, by reference, by need...
- Function f is strict when and only when: $f \perp=\perp$
- Strict evaluation - function's arguments are evaluated completely before the function is applied.
- innermost reduction, eager evaluation or greedy evaluation
- Sometime also Call by value - it requires strict evaluation, arguments are passed as evaluated values.
■ It is used by most programming languages: Java, C\#, F\#, OCalm, Scheme...
- Non-strict evaluation - a function may return a result before all of its arguments are fully evaluated.
- outer-most reduction, normal order evaluation (does not evaluate any of the arguments until they are needed in the body of the function).

■ Lazy evaluation - When we are lazy enough, to call our evaluation lazy?

- Sub-expressions will be evaluated only when they are needed for in evaluation.
- If they are evaluated, they are evaluated only once.

■ In pure functional languages, if we use outer-most reduction, we are doing normal order evaluation \rightarrow only needed sub-expressions are evaluated, only needed arguments are evaluated.
■ In pure functional languages, to be lazy enough, all we need is some clever way, how to pass arguments \rightarrow call by need.

- Used in Haskell, option in OCalm, Scheme, some languages simulate lazy behaviour for some sub-systems.
■ In pure functional languages, the terms lazy evaluation, call by need, or non-strict evaluation mean the same thing.
- Eager evaluation
square (1+2)
square(3)
$3 * 3$
9
- Lazy evaluation
square (1+2)
let $\mathrm{x}=1+2$ in $\mathrm{x} * \mathrm{x}$
let $\mathrm{x}=3$ in $\mathrm{x} * \mathrm{x}$
$3 * 3$
9

Advantages of Lazy evaluation

- If an expression has a normal form, it will be reached by lazy evaluation strategy (theory nonsense:-).
- It allows to use new concepts, like infinite structures or functions \rightarrow new way how to solve a problem (i still wont use it:-).
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
■ It is useful when processing (large) data (LINQ, Apache Spark,..)
- Consider following example: $\operatorname{map}\left(\backslash x->x^{\wedge} 4\right)(\operatorname{concat}(\operatorname{map}(\backslash x->[1 . . x])[1 . .10]))$
- Will be the intermediate results constructed?
- In fact, we are continually getting items from the final list!
- How the equivalent in C++ will look like?

■ We need to sacrifice code clarity, or all intermediate results will be computed before we get some result.

Thank you for your attention

Marek Běhálek

VSB - Technical University of Ostrava
marek.behalek@vsb.cz
December 5, 2022

```
VSB TECHNICAL | FACULTY OF ELECTRICAL | DEPARTMENT
|||}\begin{array}{l}{\mathrm{ UNIVERSITY }}\\{\mathrm{ OF OSTRAVA }}
    OF OSTRAVA SCIENCE
```

