
www.vsb.cz

Basics of Functional Programming
behalek.cs.vsb.cz/wiki/Functional_Programming

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

September 26, 2023

1 Introduction
2 Haskell
3 Tools
4 Basic of Haskell’s Syntax
5 Type system
6 Function’s Syntax
7 Lists
8 Tuples
9 Type classes 101

10 Functions as first class values
11 Operators
12 Special types of lists
13 Basic functions for lists
14 Lambda expressions
15 Composing functions with $ and .
16 User defined data types
17 Type classes 102
18 Abstract data types

Marek Běhálek (VSB-TUO) Basics of Functional Programming 1 / 100

Introduction

Functional Style of Programming

Along with logical programming represents declarative style of programming.
Omitting some details, Declarative style of programming is opposite to imperative style of
programming.
Imperative programming

Program is a sequence of statement.
Exact steps defining what to do.
Statements have side effects (a=5;).
Different meaning to things from math.

Functional programming
Program compose from a set of functions that defines what is.
Program’s evaluation is then an evaluation of a main expression.
No implicit state, functions have no side effects → referential transparency (good stuff...:-)
Closer to math - for example the term variable have its original meaning.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 2 / 100

Introduction

Functional Programming - Good / Bad / Ugly I

Good
Excellent abstraction mechanisms (high order functions, function composition).

Elegant and concise program → shorter then imperative counterparts, more error prone →
easier to maintain

New possibilities like lazy evaluation → allows us to work with infinite structures.
Very nice mechanism how to handle (big) data.

Referential transparency allows compiler (or other tools) to reason about program’s
behaviour and even prove its properties.
No side effects → efficient and easy (automatic) program’s parallelization.

Bad
Debugging - harder (harder to make nontrivial mistakes, if there are no type errors).
Performance

Restricted by current hardware - more suitable for imperative languages.
To get good performance we offten need to make sacrifices (OCaml - imperative features, no
lazy evaluation) and/or perform complex optimizations.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 3 / 100

Introduction

Functional Programming - Good / Bad / Ugly II

Ugly - How often are pure functional languages used in real applications?
Some languages were successful in some areas like Elrang - Elixier for run-time systems.
We will be using Haskell (20th (or so) on list for open-source projects, Facebook anti-spam
engine).
Popular languages implement multiple programming paradigms, in some functional
programming is dominant (Python, Javascript, C#), some technologies are even closer to
the essence of pure functional programming (LINQ in C#).
For some components, you do not even know in which language they were built (Scala runs
on JVM, Elm compiles to Javascript).

Still, functional style of programming is often used even in traditional imperative
languages.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 4 / 100

Haskell

Haskell

So, why we learn Haskell?
Pure functional language → basic principles are exposed

It is simpler then different dialects of ML, Lisp, ...

Mature language + plenty of tools
Compared to other (imperative) languages very simple.
Difficulty of learning new programming language is in:

learning a syntax and a semantic of constructs from the language → simple for Haskell
learning how to solve the problem in functional way → that will be the main scope of this
course
learning how to use API → takes usually most time, we will be using only small part of API,
moreover, most of these functions we will write ourselves

Marek Běhálek (VSB-TUO) Basics of Functional Programming 5 / 100

Haskell

Functions Wherever You Look I

Function
Based on input parameters returns output value (values).
Definitions:
name :: Type
name = expression
Examples:
doubleMe x = x * x
plus x y = x + y

max x y | x > y = x
| x <= y = y

factorial 0 = 1
factorial n = n * factorial (n-1)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 6 / 100

Haskell

Functions Wherever You Look II

A process of giving particular inputs is called functional application.
Example:
plus 4 5

Functional programming
A program is a set of function definitions.
These functions captures our particular problem.
Desired computation is then an evaluation of main expression.

How to evaluate an expression: (7-3)*2 ?
There are various options and strategies (lazy evaluation...).

Marek Běhálek (VSB-TUO) Basics of Functional Programming 7 / 100

Haskell

What is a function? More questions?

A box that takes an item from functions
domain and transforms it into an item
from functions codomain.

What is an item in the input domain or
output codomain?

How can we define a function? Which
tools we need?
What can we do with funcitons? Can we
compose new functions from existing
functions? Can function use other
functions?
How can we build a program from
functions?

Marek Běhálek (VSB-TUO) Basics of Functional Programming 8 / 100

Haskell

Input and output of functions

Can we use more than one item in the input or output?
From definition: function takes x ∈ X and produces exactly one y ∈ Y , it is usually
denoted as: f : X → Y .

f : N→ N
f(x) = x+ 5

But there are binary (n-ary) functions?
It is defined as: f : X × Y → Z
Element in Cartesian product is: (x, y) ∈ X × Y

g : N× N→ N
g(x, y) = x+ y

We can use another clever trick to introduce more arguments: a function can return a
function (more details later).

h : N→ (N→ N)
Marek Běhálek (VSB-TUO) Basics of Functional Programming 9 / 100

Haskell

How can we define a function?

In computer science, a function is defined by:
is type signature;
and by a rule, that assigns an output value for an input value.

Generally, in computer science, this rule can be a set of instructions (statements).
In Haskell it is restricted to expressions (in fact same as mathematical expressions).

It is a syntactic entity that may be evaluated to determine its value.
It is a combination of one or more constants, variables, functions, and operators.
Expressions are evaluated according to its particular rules of precedence and of association
(in Haskell, you can safely assume, that it is the same as in math).

To create expressions we need:
basic elements - numbers, characters... → basic data types;

There is a type Int roughly representing natural numbers (set N).
basic functions and operators;

There are binary operators like +,−, ∗ that works with the type Int.
Their type signature is: Int -> Int -> Int

some mechanisms to define more complex expressions.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 10 / 100

Haskell

How to build more complex functions?

We need some syntactic constructs for branching → Nothing new, we know it from math!

abs(x) =

{
x if x ≥ 0
−x otherwise

A function can use another functions! → We can define hierarchy and reuse repeating
patterns.

f(x, y) = abs(x) + abs(y) + abs(1) + 1

Functions are first-class citizens in Haskell (as in math) → a function can be used as
parameter or as a return value → it is a normal value.

From mathematics, we know function composition (denoted as ◦).
It is an operator (like +), that takes two functions f and g, and produces a function:
h = g ◦ f such that: h(x) = g(f(x)).

test1(x) = (sin ◦ abs)(x)
test2(f, x) = (f ◦ abs)(x)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 11 / 100

Haskell

How can we build a program from functions?

We decompose the problem into smaller parts.
These parts are implemented as elementary functions.
We have a mechanisms, how to combine these functions together.
So, a whole program will be a set of functions.
Finally, we need some starting point for our program → usually a function named main.
By evaluation of main function (its right-side expression), the program is performed.
Still, we are missing some key ideas:

Can we compose any two functions? → Are there some rules for working with functions?
Long running computation → Something like a cycle in C++ → recursive functions.
How to store real data? → User defined data types

Marek Běhálek (VSB-TUO) Basics of Functional Programming 12 / 100

Tools

Tools

Haskell Platform
Glasgow Haskell Compiler (Interpreter)
Stack - package manager
Hoogle - API documentation

Visual Studio Code
Haskell
Haskero
Haskell GHCi Debug Adapter Phoityne

Marek Běhálek (VSB-TUO) Basics of Functional Programming 13 / 100

Tools

GHCi

Basic usage

>ghci
GHCi, version 8.6.5: http://www.haskell.org/ghc/ :? for help
Prelude>2*(3+5)
16

File containing user’s definitions
>ghci example.hs
GHCi commands:
:edit|:e [file.hs]
:load [file.hs]
:reload
:quit
:?

Marek Běhálek (VSB-TUO) Basics of Functional Programming 14 / 100

Tools

GHC

Basic usage
main = do putStr "Your name:"

name <- getStr
putStr "Hello " ++ name

Traditional compiler:

>ghc example.hs

Result will be an executable file.
Where are the functions? What is this do?

Monads - sequence of actions enveloped by pure functions.
Closer to real world program in Haskell.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 15 / 100

Tools

References

Lipovaca M.
Learn You a Haskell for Great Good!: A Beginner’s Guide (1st ed.).
No Starch Press, San Francisco, CA, USA, 2011 - for free at:
http://learnyouahaskell.com/

O’Sullivan B., Goerzen J., Stewart D.
Real world Haskell.
O’Reilly Media, Inc. 2008. ISBN:0596514980 - for free at:
http://book.realworldhaskell.org/read/

Thompson S.
The Haskell: The Craft of Functional Programming (3rd ed.).
Addison-Wesley Professional, October 2, 2011, ISBN-10: 0201882957.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 16 / 100

http://learnyouahaskell.com/
http://book.realworldhaskell.org/read/

Tools

Practical demonstration

Preparing work environment.
Usage of GHC Interpreter.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 17 / 100

Basic of Haskell’s Syntax

Input file format

Files with extension .hs (that is what we will use)
module Example where
-- Function computing sum of two numbers
sum x y = x + y

Files with extension .lhs
> module Example where

Function computing factorial
> f n = if n == 0 then 1 else n * f (n-1)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 18 / 100

Basic of Haskell’s Syntax

Module Prelude

Like in other languages, source codes are divided into separated parts, named modules in
Haskell (packages in Java, namespaces in C#,...), will be explained in details later.
Modules are composed from functions and user defined data types.
module Ant where ...
...

Modules can be imported
module Example where
import Ant
...
Special package imported by default: Prelude.

Some function names are taken.
Hiding functions:
import Prelude hiding (max, min)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 19 / 100

Basic of Haskell’s Syntax

Names

Identifiers - begin with letter, followed by a sequence of letters, digits, underscores and
single quotes.
abc, h_e_l_l_o, hello', hello123, HeLLo, Hello

Names used in definition for values begin with small letters.
Types and constructors begins with capital letters.

data Tree a = Leaf a
| Node (Tree a) (Tree a)

f::Int -> Int -> Int
f x y = x + y

Marek Běhálek (VSB-TUO) Basics of Functional Programming 20 / 100

Basic of Haskell’s Syntax

Layout I

Indentations are important! They define the structure of your source files.

Internally, constructs with { } ; are used (similarly to C++).

Strange errors with ’;’
funny x = x +

1
ERROR ... : Syntax error in expression (unexpected ';').

Basic rule → all constructs with the same indentation belongs to the same scope.
Inner scope requires a bigger indentation.

Be careful, spaces are not the same as tabulators.
Examples

Marek Běhálek (VSB-TUO) Basics of Functional Programming 21 / 100

Basic of Haskell’s Syntax

Layout II

maxsq x y
| sqx > sqy = sqx
| otherwise = sqy
where

sqx = sq x
sqy = sq y
sq :: Int -> Int
sq z = z*z

maxsq x y
| sq x > sq y = sq x
| otherwise = sq y

where
sq x = x * x

Marek Běhálek (VSB-TUO) Basics of Functional Programming 22 / 100

Type system

Are there some rules for working with functions?

Consider function:

f : R→ R
f(x) =

√
log(x)

Is the definition OK?
What options we have, if we want to work with this function?

Better specification of the function’s domain → In terms of computer science, introduce a
new type like: X = {x ∈ R, x ≥ 1}, then f : X → R
Be really careful when evaluation this function → while evaluating, we will handle possible
exceptional situations.
Do not worry at all (programmer is always right, what will be will be...:-)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 23 / 100

Type system

Type system

Very important part of any programming language.
Loosely definition

Type system associates one (or more) type(s) with each program value.
By examining the flow of these values, a type system attempts to prove that no "type
error" can occur.

Assigning data types (typing) gives meaning to collections of bits.
Types usually have associations either with values or with objects such as variable.
Types allow programmers to think about programs at a higher level than the bit or byte,
not bothering with low-level implementation.
Use of types may allow a compiler to detect meaningless or invalid code.

Especially true for pure functional languages, where it is hard to make mistake in a program
that has correct types.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 24 / 100

Type system

Basic functionality of a type system (in Haskell) I

Haskell has static, strong and safe type system. Moreover, it supports polymorphism.
Static typing (C, C++, Java, Haskell...)

Type checking is performed (mostly) during compile-time.
Static typing is a limited form of program verification.
It allows many errors to be caught early in the development cycle.
Static type checkers are conservative - they will reject some programs that may be
well-behaved at run-time, but that cannot be statically determined to be well-typed.

Dynamic typing (Javascript, Python, PHP...)
Majority of its type checking is performed at run-time.
Dynamic typing can be more flexible than static typing. For example by allowing programs to
generate types based on run-time data.
Run-time checks can potentially be more sophisticated, since they can use dynamic
information as well as any information that was present during compilation.
var x := 5; // (1) (x is an integer)
var y := "37"; // (2) (y is a string)
var z := x + y; // (3) (? - Visual Basic = 42, Javascript "537")

Marek Běhálek (VSB-TUO) Basics of Functional Programming 25 / 100

Type system

Basic functionality of a type system (in Haskell) II

Strongly typed languages - do not allow undefined operations to occur.
Weak typing means that a language implicitly converts (or casts) types when used.
Type safe - is language if it does not allow operations or conversions which lead to
erroneous conditions.
Memory safe - for example it will check array bounds (resulting to compile-time and
perhaps run-time errors).
int x = 5;
char y[] = "37";
char* z = x + y; //z points five characters after y
Polymorphism

The ability of code (in particular functions, methods or classes) to act on values of multiple
types, or the ability of different instances of the same data-structure to contain elements of
different types.
Type systems that allow polymorphism generally do so in order to improve the potential for
code re-use.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 26 / 100

Type system

Basic functionality of a type system (in Haskell) III

Animal obj = new Horse();
obj.sound();

length :: [a] -> Int -- a is a type variable
length [] = 0
length (x:xs) = 1 + length xs

Type checking - the process of verifying and enforcing the constraints of types.
Type interference

Strongly statically typed languages
Automatic deduction of the data types
Hindley-Milner type system

Marek Běhálek (VSB-TUO) Basics of Functional Programming 27 / 100

Type system

Basic data types I

1::Int
+, -, *, ^, div, mod, abs, negate, ==
'a'::Char

Special characters: '\t', '\n', '\\','\'', '\"'
Prelude functions:
ord :: Char -> Int, chr :: Int -> Char, toUpper, isDigit
Library Char

True,False::Bool
&&, ||, not, ==

3.14::Double (3.14::Float)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 28 / 100

Type system

Basic data types II

+, -, *, /, ^, **,
==, /=, <, >, <=, >=
abs, acos, asin, sin, cos,
celing, floor, exp, fromInt, log, negate, pi
"Hello"::String

Defined as: type String = [Char] - list of characters, lists will be explained later.
Example: "Hello world"

Marek Běhálek (VSB-TUO) Basics of Functional Programming 29 / 100

Type system

Summary, how to work with these basic data types

Each type is defined by its unique name (starting with capital letter in Haskell) - String.
There are some build-in types, later we will learn a way to build our own types.
There is a way, how to write a constant value (literal) of these types.
Values belongs to exactly one type.
There are basic functions and operators working with these basic data types.
If you want to define a type (for a value or a function), you can use: 1::Int

Marek Běhálek (VSB-TUO) Basics of Functional Programming 30 / 100

Type system

Function’s definition and its type

Definition
name :: Type
name parameters = expression

Example
square :: Int -> Int -- optional!
square n = n * n

sum :: Int -> Int -> Int
sum x y = x + y

Function application
square 5 = 5 * 5
square (2+4) = (2+4) * (2+4)
sum 4 5

Marek Běhálek (VSB-TUO) Basics of Functional Programming 31 / 100

Type system

So, how to really write a function in Haskell?

f : N→ N
f(x) = x+ 5

f :: Int -> Int
f x = x + 5

g : N× N→ N
g(x, y) = x+ y

g :: (Int, Int) -> Int
g (x,y) = x + y

But on previous slide, there was: sum :: Int -> Int -> Int

Real way, how to write binary function in Haskell.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 32 / 100

Type system

So, how to really write a function in Haskell?

What is: ->
In fact, it is an operator with right associativity.
So, sum :: Int -> Int -> Int is equivalent to sum :: Int -> (Int -> Int).
How can we understand it? → Remember, functions are also values → It is a function that
returns a function!

Functional programming languages are based on Lambda calculus.
Lambda abstraction ⇔ anonymous function: λx.x+ 5
sum x y = x + y ⇔ λx.(λy.x+ y) ⇔ λxy.x+ y

What can we do with such lambda expressions? → We can apply them on some values.
How it is evaluated? → We substitute the corresponding variable with the value.
(λx.x+ 5 2)→ (x+ 5)[x := 2]→ 2 + 5→ 7
((λx.(λy.x+ y) 2) 3)→ ((λy.x+ y)[x := 2] 3)→ (λy.2 + y 3)→ (2 + y)[y := 3]→
2 + 3→ 5

Functions application is left associative.
((sum 2) 3) ⇔ sum 2 3

Marek Běhálek (VSB-TUO) Basics of Functional Programming 33 / 100

Type system

So, how to really write a function in Haskell?

Where are we now?
We can write a function using the basic data types.
The function will be using basic operators and functions associated with these types.
We know, how to create a n-ary function and how to use it.

What are the most fancy things we can do now?
applyTwice :: (Double -> Double) -> Double -> Double
applyTwice f x = f (f x) -- applyTwice sin 1

What if we want to use it with Int and function negate?
We talked about polymorphism → We can use parameters (variables) in type definition.

applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x) -- applyTwice sin 1, applyTwice negate 1

Still, we need to be careful, types needs to be valid.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 34 / 100

Type system

So, how to really write a function in Haskell?

Can we use more parameters in type definition?
Function composition: h = g ◦ f such that: h(x) = g(f(x)).

compose :: (b -> c) -> (a -> b) -> (a -> c)
compose g f = -- ???

We still do not have tools to build more complex functions...

Marek Běhálek (VSB-TUO) Basics of Functional Programming 35 / 100

Type system

So, how to really write a function in Haskell?

Can we use more parameters in type definition?
Function composition: h = g ◦ f such that: h(x) = g(f(x)).

compose :: (b -> c) -> (a -> b) -> a -> c
compose g f x = g (f x)

We still do not have tools to build more complex functions...

Marek Běhálek (VSB-TUO) Basics of Functional Programming 35 / 100

Type system

Interlude - Type classes - what does the => mean?

Assume the following function sum, what is its type?
sum x y = x + y

Prelude> :type sum
sum :: Num a => a -> a -> a

Num is a type class for all numbers, a is a type variable. It can be any numeric type, for
example Double or Int.

Prelude> :type (sum (4::Int) 4)
(sum (4::Int) 4) :: Int
Prelude> sum 1.1 1

We can restrict the function type.
sum :: Int -> Int -> Int
sum x y = x + y

Marek Běhálek (VSB-TUO) Basics of Functional Programming 36 / 100

Type system

Practical demonstration

Identifiers in Haskell
What is a Haskell program?
Primitive data types.
How to write an expression.
Calling some standard functions.
Using some operators for primitive data types.
Checking types of these functions.

What is the meaning of the nonsense that operator + returns as its type?

Marek Běhálek (VSB-TUO) Basics of Functional Programming 37 / 100

Function’s Syntax

Better functions

What we are missing for writing more advanced functions? → Branching

abs(x) =

{
x, if x ≥ 0
−x, otherwise

min(x, y) =

{
x, if x ≤ y
y, if x > y

Marek Běhálek (VSB-TUO) Basics of Functional Programming 38 / 100

Function’s Syntax

Syntax of function’s definition

Pattern matching
Guard expressions
max :: Int -> Int -> Int
max x y | x>=y = x

| otherwise = y
Local definitions - where

Local definitions need to have bigger indentation.
initials :: String -> String -> String
initials firstname lastname = [f] ++ ". " ++ [l] ++ "."

where f = head firstname
l = head lastname

All these syntax constructs can be used to define a single function.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 39 / 100

Function’s Syntax

Pattern matching

Several function definitions (equations) with different patterns.
f pat11 pat12 ... = rhs1
f pat21 pat22 ... = rhs2
...

First equation that can be unified with given parameters is chosen.
f value1 value2 ...

If there is none → error
The most basic patterns are:

constants;
variables.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 40 / 100

Function’s Syntax

Pattern matching - naive example

Basic example:
sayMe 1 = "One!"
sayMe 2 = "Two!"
Some function applications:

*Main> sayMe 1
"One!"
*Main> sayMe 3
"*** Exception: input.hs:(1,1)-(2,16): Non-exhaustive patterns in
function sayMe

First equation that can be unified with given parameters is chosen.
sayMe 1 = "One!"
sayMe 2 = "Two!"
sayMe x = "Something else"

Marek Běhálek (VSB-TUO) Basics of Functional Programming 41 / 100

Function’s Syntax

Better functions

A function can have multiple definitions, they must differ in their parameters - patterns.
More general patterns (containing variables) must be defined after more specific patterns
(with constants).

Each such definition can use guard expressions.
Each such definition can have its local where section.
Definitions are then processed from top to bottom, for each set of input parameters
exactly one right side is chosen.
funny 0 y z | z < y = z

| otherwise = y
funny 1 y z | y == z = abs z where

abs x | x < 0 = -x
| x >= 0 = x

funny x y z = x + y + z
We are finally ready to talk about recursion :-)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 42 / 100

Function’s Syntax

Recursion

Recursion generally contains:
A simple base case (or cases) — a
terminating scenario that does not use
recursion to produce an answer.
A recursive step — a set of rules that
reduces all successive cases toward the
base case.

Recursion is frequent occurrence in
math.

Many axioms are recursive - natural
numbers.
Profs - mathematical induction.

Fractals - can usually be drawn using
recursion.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 43 / 100

Function’s Syntax

Pattern matching - better example

The answer to most questions in Haskell is recursion.
Recursive function is a function that calls itself.

Very nice is a tail recursion..

Simple example of recursion is factorial in math.
n! = n× (n− 1)× (n− 2)× (n− 3)× · · · × 3× 2× 1

fact(n) =

{
1, if n = 0

n ∗ fact(n− 1), otherwise

How to write it in Haskell?
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)

Pattern matching is a syntactic sugar based on case expression.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 44 / 100

Function’s Syntax

Programs evaluation

Program’s evaluation is equivalent to evaluation of the expression on the right side of
main function.
How to evaluate expression?

Repetitively, we take the operation with the biggest priority and solves it.
If there are more items with the same priority, associativity is used to determine the
operation to process.
While programs compose from functions, the most interesting operation is function’s
application.

Function application have the highest priority and it is left associative.
Function application generally replaces function call with its right-hand side expression
(substituting the parameters).

If there are multiple definitions, right-hand side expression is chosen based on parameters.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 45 / 100

Function’s Syntax

Interlude - operators and priority

What about the following expression, how to understand it? Which brackets are
necessary?
n * factorial (n-1)

In Haskell, like in other languages (C++), there are functions and operators.
Operators are composed from characters:
! # & $ % * + - . / < > = ? \ ^ | : ~

Operators are using infix notation (5 + 3) and are strictly binary.
Priority rules:

Function application has a highest priority.
Operator * have a higher priority then +.

Operators and their priority will be explained later. If not sure use brackets!

Marek Běhálek (VSB-TUO) Basics of Functional Programming 46 / 100

Function’s Syntax

Pattern matching - application

Factorial definition
factorial :: Int -> Int
factorial 0 = 1
factorial n = n * factorial (n-1)

Functions application step by step.
factorial 5 = 5 * factorial (5-1) = 5 * factorial 4

= 5 * 4 * factorial 3
= 5 * 4 * 3 * factorial 2
= 5 * 4 * 3 * 2 * factorial 1
= 5 * 4 * 3 * 2 * 1 * factorial 0
= 5 * 4 * 3 * 2 * 1 * 1
= 120

Marek Běhálek (VSB-TUO) Basics of Functional Programming 47 / 100

Function’s Syntax

Recursion

In computer science, recursion is a method of solving a computational problem.
A common algorithm design tactic is to divide a problem into sub-problems of the same type
as the original, solve those sub-problems, and combine the results (divide and conquer).
Another common algorithm design tactic is dynamic programming - we save the
intermediate steps in recursion to simplify further computation.

Type of recursion:
Single recursion vs. Multiple recursion
Direct recursion vs. Indirect recursion
Structural recursion vs. Generative recursion

Marek Běhálek (VSB-TUO) Basics of Functional Programming 48 / 100

Function’s Syntax

Fibonacci numbers

Factorial is simple, but consider Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13 ...
Lets define a function that computes nth number in the sequence.

fib(x) =


0, if x = 0
1, if x = 1

fib(x− 1) + fib(x− 2), otherwise

Is there only one way to solve the problem?
For most problems we have several algorithms solving this problem.
Even if use recursion, there can be more recursive algorithms solving this problem.

Solving the problem, we can follow the
definition.

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 49 / 100

Function’s Syntax

Fibonacci numbers

Lets check our solution, it is even a good solution?
How many steps are we expecting and how many will be performed by our code?

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

What’s wrong in our solution? → We are computing the same intermediate steps.
Roughly speaking, in terms of the computer science, we have created an algorithm with
exponential time complexity.

Fibonacci numbers grow at an exponential rate equal to the golden ratio
ϕ = (1 +

√
5)/2 ∼= 1.61803.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 50 / 100

Function’s Syntax

Fibonacci numbers

Can we do better? How we (humans) solve it with pen and paper?
(0, 1)→ (1, 1)→ (1, 2)→ (2, 3)→ (3, 5)→ (5, 8)→ (8, 13)...

So, how can we improve our solution?
1 We can save the intermediate steps in some kind of dictionary (we do not have skills to do

that).
2 We can rewrite the solution using the strategy from bottom to top instead of from top to

bottom.

fib n = fst (fibCount n) where
fibCount 0 = (0,1)
fibCount n = fibStep (fibCount (n-1))
fibStep (x,y) = (y, x+y)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 51 / 100

Function’s Syntax

Fibonacci numbers

fib n = fst (fibCount n) where
fibCount 0 = (0,1)
fibCount n = fibStep (fibCount (n-1))
fibStep (x,y) = (y, x+y)

How it will be evaluated?

fib 3 = fst (fibCount 3)
= fst (fibStep (fibCount 2))
= fst (fibStep (fibStep (fibCount 1)))
= fst (fibStep (fibStep (fibStep (fibCount 0))))
= fst (fibStep (fibStep (fibStep (0,1))))
= fst (fibStep (fibStep (1,1)))
= fst (fibStep (1,2))
= fst (2,3)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 52 / 100

Function’s Syntax

Syntax for expressions

Expressions can be used anywhere!
We already know expressions - function’s application and a usage of operator.
if expression - it is similar to ternary ?: operator from C++ ((x>y)? x : y)
max x y = if x > y then x else y
case expression
describe :: Int -> String
describe n = "The number is " ++ case n of

0 -> "zero."
1 -> "small."
x -> "large."

let expression
cylinder r h = let sideArea = 2 * pi * r * h

topArea = pi * r ^2
in sideArea + 2 * topArea

Marek Běhálek (VSB-TUO) Basics of Functional Programming 53 / 100

Function’s Syntax

Practical demonstration

Priority in expressions.
Implementing some simple functions.
Defining function’s type.
Type inheritance.
Where can I store some data if needed? -- How to declare variables?

How can I write a cycle? -- I NEED my cycles!

Marek Běhálek (VSB-TUO) Basics of Functional Programming 54 / 100

Lists

Lists

Probably the most used data structure in functional Languages (for C++ the equivalent
will be array).
Lists are a homogeneous data structures.

A list can contain only elements with the same data types.
[1,2,3] -- OK
[1,'a',3] -- Wrong
"hello" == ['h','e','l','l','o']

Informally, the term syntactic sugar refers to a nicer way how to write something.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 55 / 100

Lists

List - Basic concept

Figure: A scheme of the list.

Element in a list contains the data and a reference to other elements.
The last element points nowhere (usually a sort of null reference).

How to work with such a list?
What if i want to get nth element in the list?

Marek Běhálek (VSB-TUO) Basics of Functional Programming 56 / 100

Lists

List - Basic concept

Array List Winner

Get nth element pointer arithmetic’s need to go trough the list Array
Add element at the beginning new memory, copy all easy, just add List
Add element at other positions new memory, copy all rebuild the list Tie
Remove element at the beginning new memory, copy relevant easy, get second element List
Remove element at other positions new memory, copy relevant rebuild the list Tie
Modify first element get and modify new first, stitch the tail List
Modify any other element get and modify rebuild the list Array

Table: Informal comparison of an array and a list

Efficient usage of lists usually requires different algorithms (approach).

Marek Běhálek (VSB-TUO) Basics of Functional Programming 57 / 100

Lists

Lists in Haskell

Definition
data List a = Cons a (List a)

| Nil
Application of (syntactic) sugar

List a → [a]
Cons a → : -- a -> [a] -> [a]
Nil → []

List literals
[1,2,3] :: [Int]
1:2:3:[] :: [Int]

Patterns for lists
Empty list []
Non-empty list (x:xs)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 58 / 100

Lists

Function working with lists

List length function
length [] = 0
length (x:xs) = 1 + length xs
Application of this function
length [1,2,3] = 1 + length [2,3]

= 1 + 1 + length [3]
= 1 + 1 + 1 + length []
= 1 + 1 + 1 + 0 = 3

What is the type of this functions?
Do we even know or care about the type of the element in the list?

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

Marek Běhálek (VSB-TUO) Basics of Functional Programming 59 / 100

Tuples

Tuples

Haskell have build in ordered tuples (a,b,c,d,...)
(1,2) :: (Int,Int)
(1,['a','b'], "abc")::(Int, [Char], String)
() :: ()

Unlike homogeneous lists, tuples can have elements of different types.
Example of a pattern for tuples:
addThem :: (Int, Int) -> Int
addThem (x,y) = x + y

Build in functions working with tuples.
addThem :: (Int, Int) -> Int
addThem x = fst x + snd y

Marek Běhálek (VSB-TUO) Basics of Functional Programming 60 / 100

Type classes 101

Type classes 101 (more details later)

Not the same as classes form Java or C++.
Type of the operator ==

ghci> :t (==)
(==) :: (Eq a) => a -> a -> Bool

Definition of the type class Eq
class Eq a where

(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

A type can become a member of this class, if it provides functions and operators that the
class defines.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 61 / 100

Type classes 101

Practical demonstration

List
Basic type storing bigger data - List -- Who needs arrays...
Functions for all lists (type variables → polymorphism).
Simple functions going trough the list.
Nice patterns available to handle lists.

Tuples

Marek Běhálek (VSB-TUO) Basics of Functional Programming 62 / 100

Type classes 101

Basic type classes

Class Eq - == /=
Class Ord - > < >= <= compare
Class Show - show :: a -> String
Class Read - read :: (Read a) => String -> a

Why is it not working?

ghci> read "4"
<interactive>:1:0:

Ambiguous type variable `a' in the constraint:
`Read a' arising from a use of `read' at <interactive>:1:0-7

Probable fix: add a type signature that fixes these type variable(s)

We can repair it by: read "4" :: Int

Class Enum - succ, pred
Class Bounded - minBound, maxBound :: (Bounded a) => a

Marek Běhálek (VSB-TUO) Basics of Functional Programming 63 / 100

Type classes 101

Basic type classes for numbers

Basic relations between numeric classes Num (not all numeric classes are mentioned)
Num → Real, Fractional
Real → Integral, RealFrac
Fractional → RealFrac, Floating

Integral → Int, Integer
Floating → Float, Double

Marek Běhálek (VSB-TUO) Basics of Functional Programming 64 / 100

Type classes 101

Conversion between numbers

There are functions taking a value and pushing it higher in the type hierarchy.
fromIntegral :: (Num b, Integral a) => a -> b

fromIntegral (length [1,2,3,4]) + 3.2

There are functions changing the type class to a class in the same level
realToFrac :: (Real a, Fractional b) => a -> b

Special functions
round :: (RealFrac a, Integral b) => a -> b

There is a lot of functions converting types of numeric values.
fromInteger, toInteger, fromRational, toRational, ceiling,
floor, truncate

Marek Běhálek (VSB-TUO) Basics of Functional Programming 65 / 100

Functions as first class values

Partially applied functions

In theory, every Haskell function only takes one parameter.
But we were using functions with several parameters? → curried functions
Definition max :: (Ord a) => a -> a -> a can be rewritten as:
max :: (Ord a) => a -> (a -> a).

What really happens when a function is applied? → (max 2) 3
It will work even if we specify just one parameter max 2 → partially applied function
Prelude> :t max 2
max 2 :: (Ord a, Num a) => a -> a

Functions can return other functions
compareWithHundred :: (Num a, Ord a) => a -> Ordering
-- compareWithHundred x = compare 100 x
compareWithHundred = compare 100

Marek Běhálek (VSB-TUO) Basics of Functional Programming 66 / 100

Functions as first class values

High order functions

Functions can have other functions as parameters.
applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)

Useful example of a high order function.
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

How it is used?
map fst [(1,2),(3,5),(6,3),(2,6),(2,5)] -- [1,3,6,2,2]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 67 / 100

Functions as first class values

Practical demonstration

What is a type class?
Useful type classes.
Function is a first class citizen in Haskell.

Partial application, curried functions.
Usage of high order functions.

Some tips how to write complex functions.
Dividing complex computations into smaller functions.
Construct let ... in

Marek Běhálek (VSB-TUO) Basics of Functional Programming 68 / 100

Operators

Operators in Haskell

Operators are composed from characters: !#&$%*+-./<>=?\^: |
Operators are using infix notation (5 + 3).
Important for operators are priority and associativity.
Operators can be used as functions.
(+) 1 2

Functions can be use as operators.
5 `mod` 3

This change affects also the priority!
We can define the priority of an operator created from a function.
infixl 7 `mod`

Marek Běhálek (VSB-TUO) Basics of Functional Programming 69 / 100

Operators

Standard operators

Precedence Operator Description Associativity

9 . Function composition Right
8 ^,^^,** Power Right
7 *,/,`quot`,`rem`,`div`,`mod` Left
6 +,- Left
5 : Append to list Right
4 ==,/=,<,<=,>=,> Compare-operators
3 && Logical AND Right
2 || Logical OR Right
1 >>,>>=,=<<
0 $,$!,`seq` Right

Marek Běhálek (VSB-TUO) Basics of Functional Programming 70 / 100

Operators

Creating new operators

Operators are defined similarly to functions.
(&&&) :: Int -> Int-> Int
x &&& y = x + y

We can change the precedence and associativity.
infixl 6 &&&
Associativity can be changed by: infix, infixl, infixr

Keyword infix defines no associativity. We need explicit parenthesis.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 71 / 100

Special types of lists

Numeric lists

[m..n]
[1..5] -- [1,2,3,4,5]

[m1,m2..n]
[1,3..10] -- [1,3,5,7,9]

Never-ending list - [m..]
[1..] -- [1,2,3,4,5,...]

[m1,m2..]
[5,10..] -- [5,10,15,20,25,...]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 72 / 100

Special types of lists

List comprehension

Consider mathematical definition → Define a set containing even natural numbers
smaller then or equal to 10.
[n | n <- [1..10], n `mod` 2 == 0]

Examples
[x*2 | x <- [1..10]] -- [2,4,6,8,10,12,14,16,18,20]
[x*2 | x <- [1..10], x*2 >= 12] -- [12,14,16,18,20]
[x*y | x <- [2,5,10], y <- [8,10,11]] -- [16,20,22,40,50,55,80,100,110]
allEven xs = xs == [x | x<-xs, isEven x]
allOdd xs = xs == [x | x<-xs, not(isEven x]
length' xs = sum [1 | _ <- xs]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 73 / 100

Special types of lists

Never-ending (infinite) lists

Can not show the list [1..] but we can still use it (lazy evaluation).
Consider following function zip.
zip :: [a] -> [b] -> [(a, b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip [1,2,3] "ABCD" -- [(1,'A'),(2,'B'),(3,'C')]
zip [1..] "ABCD" -- [(1,'A'),(2,'B'),(3,'C'),(4,'D')]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 74 / 100

Special types of lists

Practical demonstration

Defining new operators.
List comprehensions:

it can simplify the solution;
nice examples of its usages.

Nice examples of usages of infinite lists. --Are they even USEFUL?

Lambda expressions.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 75 / 100

Basic functions for lists

Basic functions for lists I

Accessing list elements
head [5,4,3,2,1] -- 5
tail [5,4,3,2,1] -- [4,3,2,1]
last [5,4,3,2,1] -- 1
init [5,4,3,2,1] -- [5,4,3,2]
[1,2,3] !! 2 -- 3
length [5,4,3,2,1] -- 5
null [1,2,3] -- False
null [] -- True

Merging lists

Marek Běhálek (VSB-TUO) Basics of Functional Programming 76 / 100

Basic functions for lists

Basic functions for lists II

[1,2,3] ++ [4,5] -- [1,2,3,4,5]
concat [[1,2],[3],[4,5]] -- [1,2,3,4,5]
zip [1,2] [3,4,5] -- [(1,3),(2,4)]
zipWith (+) [1,2] [3,4] -- [4,6]

Computing with lists
minimum [8,4,2,1,5,6] -- 1
maximum [1,9,2,3,4] -- 9
sum [5,2,1,6,3,2,5,7] -- 31
product [6,2,1,2] -- 24

Taking a part of a list

Marek Běhálek (VSB-TUO) Basics of Functional Programming 77 / 100

Basic functions for lists

Basic functions for lists III

take 3 [5,4,3,2,1] -- [5,4,3]
drop 3 [8,4,2,1,5,6] -- [1,5,6]
takeWhile (> 0) [1,3,0,4] -- [1,3]
dropWhile (> 0) [1,3,0,4] -- [0,4]
filter (> 0) [1,3,0,2,-1] -- [1,3,2]

Transforming a list
reverse [5,4,3,2,1] -- [1,2,3,4,5]
map (*2) [1,2,3] -- [2,4,6]

Selected nice functions
4 `elem` [3,4,5,6] -- True
replicate 3 10 -- [10,10,10]
-- cycle and repeat returns infinite list
take 10 (cycle [1,2,3]) -- [1,2,3,1,2,3,1,2,3,1]
take 10 (repeat 5) -- [5,5,5,5,5,5,5,5,5,5]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 78 / 100

Basic functions for lists

Folding a list I

In general, folding functions transform Foldable structure to a value.

Foldable structure can be for example a tree → for such a structure we need to define
how to traverse it.

We will be using it only for lists → lists are foldable structures.
class Foldable (t :: * -> *) where

foldl :: (b -> a -> b) -> b -> t a -> b
foldr :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl1 :: (a -> a -> a) -> t a -> a

Examples

Marek Běhálek (VSB-TUO) Basics of Functional Programming 79 / 100

Basic functions for lists

Folding a list II

sum' :: (Num a) => [a] -> a
sum' x = foldl (+) 0 x

product' :: (Num a) => [a] -> a
product' x = foldr1 (*) x

Functions scanl, scanr, scanl1, scanr1 are like their fold counterparts, only they
report all the intermediate accumulator states in the form of a list.
scanl (+) 0 [3,5,2,1] -- [0,3,8,10,11]
scanr (+) 0 [3,5,2,1] -- [11,8,3,1,0]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 80 / 100

Lambda expressions

Lambda expressions

Lambdas are basically anonymous functions.
They are used only once → so they do not need even a name.

Syntax
\x y -> x + y

Examples
map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)] -- [3,8,9,8,7]

reverse' :: [a] -> [a]
reverse' = foldl (\acc x -> x : acc) []

elem' :: (Eq a) => a -> [a] -> Bool
elem' y ys = foldl (\acc x -> if x == y then True else acc) False ys

Marek Běhálek (VSB-TUO) Basics of Functional Programming 81 / 100

Composing functions with $ and .

Function application with $

Definition:
($) :: (a -> b) -> a -> b
f $ x = f x
Differences with function application.

Function application is left-associative (((f a) b) c), $ right-associative.
Function application have has a highest precedence, $ has the lowest precedence.

Why it is useful? → It eliminates many parentheses.
sum (map sqrt [1..130]) = sum $ map sqrt [1..130]
sqrt (3 + 4 + 9) = sqrt $ 3 + 4 + 9

It also means, that function application can be treated just like another function!

ghci> map ($ 3) [(4+), (10*), sqrt]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 82 / 100

Composing functions with $ and .

Function composition

Definition:
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

The meaning is the same as in math - compose a function that takes the input, applies g
and then on the result f .
It is right-associative and it has a high precedence.
(\x -> negate (abs x)) = (negate . abs)
fn = ceiling . negate . tan . cos . max 50

Marek Běhálek (VSB-TUO) Basics of Functional Programming 83 / 100

User defined data types

User defined data types - introduction

Type synonyms (preserve type classes)
type String = [Char]
type Table a = [(String, a)]
type AssocList k v = [(k,v)]
New (algebraic) data type
data Bool = False | True
data Color = Black | White | Red

isBlack :: Color -> Bool
isBlack Black = True
isBlack _ = False

Color – type constructor
Red / Green / Blue – data (nullary) constructor

Marek Běhálek (VSB-TUO) Basics of Functional Programming 84 / 100

User defined data types

User defined data types - more advanced I

Parametric data types
data Point = Point Float Float

Data (Value) constructor’s type

ghci> :t Point
Point :: Float -> Float -> Point

Usage
dist (Point x1 y1) (Point x2 y2) = sqrt ((x2-x1)**2 + (y2-y1)**2)

ghci> dist (Point 1.0 2.0) (Point 4.0 5.0) = 5.0

Polymorphic data types

Marek Běhálek (VSB-TUO) Basics of Functional Programming 85 / 100

User defined data types

User defined data types - more advanced II

data Point a = Point a a

Constructor: Point :: a -> a -> Point a

Better examples (build in types)
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

sqrt' :: Float -> Maybe Float
sqrt' x | x < 0 = Nothing

| otherwise = Just (sqrt x)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 86 / 100

User defined data types

Recursive data types

We already know recursive data type - List
data List a = Null

| Cons a (List a)

lst :: List Int
lst = Cons 1 (Cons 2 (Cons 3 Null))
Better example - binary tree
data Tree1 a = Leaf a | Branch (Tree1 a) (Tree1 a)
data Tree2 a = Leaf a | Branch a (Tree2 a) (Tree2 a)
data Tree3 a = Null | Branch a (Tree3 a) (Tree3 a)

t2l :: Tree1 a -> [a]
t2l (Leaf x) = [x]
t2l (Branch lt rt) = (t2l lt) ++ (t2l rt)

Marek Běhálek (VSB-TUO) Basics of Functional Programming 87 / 100

User defined data types

Automatically deriving type classes

Consider following example:
data Color = Black | White
list :: [Color]
list = [Black, Black, White]

ghci> list
<interactive>:15:1: error:

* No instance for (Show Color) arising from a use of `print'
* In a stmt of an interactive GHCi command: print it

A solution can be let Haskell automatically derive type classes.
data Color = Black | White deriving (Show, Eq, Ord, Read)

ghci> list
[Black,Black,White]

Marek Běhálek (VSB-TUO) Basics of Functional Programming 88 / 100

User defined data types

Record syntax

Named fields in a data type definition.
data Person = Person { firstName :: String

, lastName :: String
, age :: Int
} deriving (Show)

ghci> :t firstName
firstName :: Person -> String

description :: Person -> String
description p = firstName p ++ " " ++ lastName p

description Person {firstName = "John" , lastName="Doe", age = 40}

Marek Běhálek (VSB-TUO) Basics of Functional Programming 89 / 100

User defined data types

Practical demonstration

New user defined data types.
Algebraic types
Parametric data types
Polymorphic data types
Simple recursive data structures (list).

Data structures handling frequently encountered problems.
Maybe
Either
Tree - Expressions

Record syntax

Marek Běhálek (VSB-TUO) Basics of Functional Programming 90 / 100

User defined data types

Modules 101

Module definition
All definitions are visible.
module A where -- A.hs, A.lhs
Restricted export
module Expr (printExpr, Expr(..)) where
Data types restrictions
Expr(..) -- exports also constructors
Expr -- exports data type name only

Restricted import
import Expr hiding(printExpr)
import qualified Expr -- Expr.printExpr
import Expr as Expression -- Expression.printExpr

Marek Běhálek (VSB-TUO) Basics of Functional Programming 91 / 100

Type classes 102

Type classes 102 I

Type class definition
class Eq a where

(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)

Default definitions are overridden by instance definition.
At least one must be defined.

Adding a type into a class.
instance Eq Color where

Black == Black = True
White == White = True
_ == _ = False

Marek Běhálek (VSB-TUO) Basics of Functional Programming 92 / 100

Type classes 102

Type classes 102 II

Adding a data type with parameters.
instance (Eq a) => Eq (Maybe a) where

Just x == Just y = x == y
Nothing == Nothing = True
_ == _ = False

There can be relations between data type classes - class Ord inherits the operations from
class Eq.
class Eq a => Ord a where

(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
compare :: a -> a -> Ordering

Marek Běhálek (VSB-TUO) Basics of Functional Programming 93 / 100

Type classes 102

Example of a user defined type class I

class Visible a where
toString :: a -> String
size :: a -> Int

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "True"
toString False = "False"
size = length . toString

Marek Běhálek (VSB-TUO) Basics of Functional Programming 94 / 100

Type classes 102

Example of a user defined type class II

instance Visible a => Visible [a] where
toString = concat . map toString
size = foldr (+) 0 . map size

class (Ord a, Visible a) => OrdVisible a where
...

Marek Běhálek (VSB-TUO) Basics of Functional Programming 95 / 100

Abstract data types

Abstract data type

Definition: An abstract data type is defined as a mathematical model of the data objects
that make up a data type as well as the functions that operate on these objects.
Imperative style

Class of objects whose logical behavior is defined by a set of values and a set of operations.
ADT is a mutable structure (mutable structure has inner state, its behaviour can change in
time).

Functional style
Each state of the structure as a separate entity.
ADT is modeled as a mathematical function that takes the old state as an argument, and
returns the new state as part of the result.
Unlike the imperative operations, these functions have no side effects.

Marek Běhálek (VSB-TUO) Basics of Functional Programming 96 / 100

Abstract data types

Example of queue usage in Java

public class QueueExample
{

public static void main(String[] args)
{

Queue<Integer> q = new LinkedList<>();

for (int i=0; i<5; i++)
q.add(i);

int remove = q.remove();
int head = q.peek();
int size = q.size();

}
}

Marek Běhálek (VSB-TUO) Basics of Functional Programming 97 / 100

Abstract data types

Queue implementation in Haskell I

Initialization: emptyQ :: Queue a

Test if queue is empty: isEmptyQ :: Queue a -> Bool

Inserting new element at the end: addQ :: a -> Queue a -> Queue a

Removing element from the beginning: remQ :: Queue q -> (a, Queue a)

module Queue(Queue, emptyQ, isEmptyQ, addQ, remQ) where
data Queue a = Qu [a]

emptyQ :: Queue a
emptyQ = Qu []

isEmptyQ :: Queue a -> Bool
isEmptyQ (Qu q) = null q

Marek Běhálek (VSB-TUO) Basics of Functional Programming 98 / 100

Abstract data types

Queue implementation in Haskell II

addQ :: a -> Queue a -> Queue a
addQ x (Qu xs) = Qu (xs++[x])

remQ :: Queue a -> (a,Queue a)
remQ q@(Qu xs) | not (isEmptyQ q) = (head xs, Qu (tail xs))

| otherwise = error "remQ"

Marek Běhálek (VSB-TUO) Basics of Functional Programming 99 / 100

Abstract data types

Practical demonstration

Functional style for handling data:
defining new data types;
how to handle these new data;
modules. --Just to avoid long files?

Marek Běhálek (VSB-TUO) Basics of Functional Programming 100 / 100

Abstract data types

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

September 26, 2023

	Introduction
	Haskell
	Tools
	Basic of Haskell's Syntax
	Type system
	Function's Syntax
	Lists
	Tuples
	Type classes 101
	Functions as first class values
	Operators
	Special types of lists
	Basic functions for lists
	Lambda expressions
	Composing functions with $ and .
	User defined data types
	Type classes 102
	Abstract data types

