
www.vsb.cz

Advanced Functional Programming
behalek.cs.vsb.cz/wiki/Functional_Programming

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

1 Application of Functional Style of
Programming

2 Immutable data types
3 Functions with No Side Effects
4 Motivation for monads
5 Monads

List Monad
6 IO Monad

State Monads
Monads in C#

7 Advantages of functional style
programming

8 Software Verification and Validation
9 Reasoning about programs
10 Lambda calculus
11 Lazy evaluation

Marek Běhálek (VSB-TUO) Advanced Functional Programming 1 / 52

Application of Functional Style of Programming

Functional programming

Declarative style of programming
We define what needs to be computed, a run-time environment responsibility is how it will
be evaluated.
Similar to math, we have various rules how to simplify an expression, but there are different
ways how these rules can be applied for given expression.

Programming with expressions (no statements)
Functional program is a set of function’s definitions.
Functions are first class citizens - a function can return a function, high-order functions,
partially evaluated functions.
Program’s evaluation is the evaluation of some main expression.

Immutable data structures - once created data can not be changed.
No side effects (if possible)

Functions only return values, no changes other changes.
For the same parameters, we always get the same result (referential transparency).
Sometimes side effects can not be avoided (input - output operations) - programming with
actions.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 2 / 52

Application of Functional Style of Programming

Functional programming vs OOP

Today, probably the most popular programming style is Object Oriented Programming.
Object Oriented Programming - objects and (most often) classes

Encapsulation - data are hidden inside and are accessible only trough given interface.
Abstraction - objects can be black boxes and we can use them even if do not know how
they are working inside (works for most programming styles).
Composition, inheritance, and delegation - objects can be white boxes and new objects can
be created with/based on existing objects.
Polymorphism - in OOP, it is usually refering to a situation, when calling code can be
agnostic as to which class in the supported hierarchy it is operating on.

Object-oriented programming makes code understandable by encapsulating moving parts.
Functional programming makes code understandable by minimizing moving parts. (M.
Feathers)

Marek Běhálek (VSB-TUO) Advanced Functional Programming 3 / 52

Application of Functional Style of Programming

Functional programming in popular languages

OK, but what if I do NOT want to use Haskell?
Today’s most popular programming languages are mostly multi-paradigm languages →
they support various style of programming.
What we really need for functional style of programming?

Functions - they are there, side effects are mostly optional.
Recursion - widely supported in all relevant languages.
What if we have a cycle inside in a function, is this a problem?
Functions as first class citizens - more of a problem, but most languages covers this.

Immutable data types - a choice of a programmer.
A strong type system to capture errors.

Notable items on a nice to have list
Algebraic data types - rare, in OOP some solution can be inheritance.
Higher-kinded polymorphism - bigger issue, partially can be solved by generic data types.

In C# we have: delegates, lambda expressions, pattern matching, tuples...

Marek Běhálek (VSB-TUO) Advanced Functional Programming 4 / 52

Immutable data types

Immutable data types - Haskell

module Stack (Stack (..), push, pop, isEmpty, empty) where

data Stack a = Stack [a] deriving Show

push :: a -> Stack a -> Stack a
push x (Stack xs) = Stack (x:xs)

pop :: Stack a -> (a,Stack a)
pop (Stack (x:xs)) = (a, Stack xs)

isEmpty (Stack []) = True
isEmpty _ = False

empty = Stack []

Marek Běhálek (VSB-TUO) Advanced Functional Programming 5 / 52

Immutable data types

Mutable data types

public class Stack<T>
{

private List<T> data;

public Stack()
{

data = new List<T>();
}

public void Push(T item)
{

data.Add(item);
}

public T Pop()
{

T item = data[data.Count-1];
data.RemoveAt(data.Count-1);
return item;

}

static void Main(string[] args)
{

Stack<int> stack =
new Stack<int>();

stack.Push(1);
stack.Push(2);
var x = stack.Pop();
Console.WriteLine(x);

}
}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 6 / 52

Immutable data types

Immutable solution in C# (1)

public class NewStack<T>
{

private T Data { get; init; }

private NewStack<T> Next { get; init; }
private NewStack() { }

static public NewStack<T> Empty() => null;
static public bool IsEmpty(NewStack<T> stack) => stack == null;

static public NewStack<T> Push(NewStack<T> stack, T item) =>
new NewStack<T> { Data = item, Next = stack };

static public (T Item, NewStack<T> Stack) Pop(NewStack<T> stack) =>
(IsEmpty(stack)) ? throw new Exception("Empty stack.") : (stack.Data, stack.Next);

}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 7 / 52

Immutable data types

Immutable solution in C# (2)

static void Main(string[] args)
{

NewStack<int> newStack = NewStack<int>.Empty();
newStack = NewStack<int>.Push(newStack, 1);
newStack = NewStack<int>.Push(newStack, 2);

(x,newStack) = NewStack<int>.Pop(newStack);

Console.WriteLine(x);
}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 8 / 52

Immutable data types

Immutable array

Sometimes they are called persistent data structures.
https://en.wikipedia.org/wiki/Persistent_data_structure

https://en.wikipedia.org/wiki/Persistent_array

Figure: An idea how to implement immutable array.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 9 / 52

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_array

Immutable data types

Immutable data types

Immutable data types
Studied problem, plenty of posibilities.
Common in API of many languages (C#: string, DateTime,
https://www.nuget.org/packages/System.Collections.Immutable/).

What if I really need mutable data structure?
For example quick implementation of quicksort?
No big deal, even Haskell has them.
https://hackage.haskell.org/package/vector-0.12.3.1/docs/
Data-Vector-Unboxed-Mutable.html
https://koerbitz.me/posts/Efficient-Quicksort-in-Haskell.html

Marek Běhálek (VSB-TUO) Advanced Functional Programming 10 / 52

https://www.nuget.org/packages/System.Collections.Immutable/
https://hackage.haskell.org/package/vector-0.12.3.1/docs/Data-Vector-Unboxed-Mutable.html
https://hackage.haskell.org/package/vector-0.12.3.1/docs/Data-Vector-Unboxed-Mutable.html
https://koerbitz.me/posts/Efficient-Quicksort-in-Haskell.html

Functions with No Side Effects

Functions with No Side Effects (1)

What are side effects, how do i recognise them?
public double Add(double a, double b) {

return a + b;
}
public double Add2(double a, double b) {

try {
Console.WriteLine($"a={a}, b={b}");

} catch (Exception ex) { }
return a + b;

}
public int Divide(int a, int b) {

return a / b;
}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 11 / 52

Functions with No Side Effects

Functions with No Side Effects (2)

How can I avoid them?
public int? Divide2(int a, int b) {

if (b == 0)
return null;

return a / b;
}

public int Divide3(int a, NonZeroInteger b) {
return a / b.Number;

}

public class NonZeroInteger {
public int Number { get; }

public NonZeroInteger(int number) {
Number = number;
if (number == 0)

throw new ArgumentException();
}

}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 12 / 52

Functions with No Side Effects

Functions with No Side Effects (3)

What if they can not be avoided?
For example input - output operations?
inputInt :: Int

inputDiff = inputInt - inputInt

funny :: Int-> Int
funny n = inputInt + n
Library functions like: Datetime.Now

Haskell uses monads to solve this issue.
Think from category theory →
theoretical aspects are beyond the
scope of this presentations.
Monad is a monoid in the category of
endo-functors.

From the theory, there are some rules
that a programmer should obey, but
even Haskell can not enforce them.

Functor → Applicative functor →
Monad

Informally, monads are a sort of pure
functional envelop for non-pure actions.

Practically, its a set of design patterns
solving plenty of situations that are
frequently occurring in practice.

For example in C#, these principles are
used for LINQ.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 13 / 52

Motivation for monads

Motivation (1)

Complicated theory, but really it solves some practical issues.
Lets start with data type Maybe
data Maybe a = Nothing | Just a

betterDiv :: Int -> Int -> Maybe Int
betterDiv x y | y==0 = Nothing

| otherwise = Just (x `div` y)

Now we want to compute some expressions where we use it like a value type.
data Expr = Num Int

| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

Marek Běhálek (VSB-TUO) Advanced Functional Programming 14 / 52

Motivation for monads

Motivation (2)

Now we need to compute such expression
eval :: Expr -> Maybe Int
eval (Num x) = Just x
eval (Div x y) = case eval x of

Nothing -> Nothing
Just x' -> case eval y of

Nothing -> Nothing
Just y' -> betterDiv x' y'

eval (Add x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of

Nothing -> Nothing
Just y' -> Just (x' + y')

We can see emerging patter, how actions are linked one after the other.
Marek Běhálek (VSB-TUO) Advanced Functional Programming 15 / 52

Monads

Monads (1)

New functions are produced like a composition of functions → important abstraction
mechanism. (.) :: (b -> c) -> (a -> b) -> a -> c
The ordering of functions does not matter, we can introduce:
(>.>) :: (a -> b) -> (b -> c) -> a -> c
We want to have something similar to that for our Functor class. How the functions
from our examples looked liked?
eval :: Expr -> Maybe Int
compare :: Int -> Maybe Bool
So, to be able to compose such functions, we need something like:
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
Consider, we have an operator >>= (bind): (>>=) :: m a -> (a -> m b) -> m b
Then it is easy, operator >=> (Fish operator, Klesli category) can be defined as:
f (>=>) g = \ a -> let mb = f a

in mb >>= g
Marek Běhálek (VSB-TUO) Advanced Functional Programming 16 / 52

Monads

Monads (2)

OK, we have eliminated some unnecessary staff, but we still need:
(>>=) :: m a -> (a -> m b) -> m b, right?
That is precisely how monads are defined in Haskell.
class Applicative f => Monad f where

(>>=) :: f a -> (a -> f b) -> f b
return :: a -> f a

The final step will be defining monad for our type Maybe.
class Monad Maybe where

Just x >>= f = f x
Nothing >>= f = Nothing

return x = Just x

Marek Běhálek (VSB-TUO) Advanced Functional Programming 17 / 52

Monads

Monads (3)

Now, we can chain actions better.

*Main> (Just 1) >>= (\x-> return (x+1))
Just 2
*Main> (Just (+)) >>= (\y -> Just (y 1 2)) >>= (\x -> return (x+1))
Just 4
*Main> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))
Just "3!"
*Main> Just 3 >>= \x -> Just "!" >>= \y -> Just (show x ++ y)
Just "3!"

We can even solve our original problem!

Marek Běhálek (VSB-TUO) Advanced Functional Programming 18 / 52

Monads

Monads (4)

Solving maybe expressions with monads.
eval :: Expr -> Maybe Int
eval (Num x) = return x
eval (Div x y) = eval x >>= (\x' -> eval y >>= (\y' -> betterDiv x' y'))
eval (Add x y) = eval x >>= \x' -> eval y >>= \y' -> return (x'+ y')
eval (Mul x y) = eval x >>=

\x' -> eval y >>=
\y' -> return (x'* y')

eval (Sub x y) = do x' <- eval x
y' <- eval y
return (x'- y')

Marek Běhálek (VSB-TUO) Advanced Functional Programming 19 / 52

Monads

Monads (5)

What are restrictions placed on Monads?
What type of a type (it is called kind in Haskell) is Maybe

*Main> :kind Int
Int :: *
*Main> :kind Maybe
Maybe :: * -> *

If we check the kind of Monad you get: (* -> *) -> Constraint.
Monad definition contains Applicative
class Functor f where

fmap :: (a -> b) -> f a -> f b -- $:: (a -> b) -> a -> b
class Functor f => Applicative f where

pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

Marek Běhálek (VSB-TUO) Advanced Functional Programming 20 / 52

Monads

Monads (6)

Now, we can add type Maybe into these type classes.
instance Functor Maybe where

fmap f (Just x) = Just (f x)
fmap _ Nothing = Nothing

instance Applicative Maybe where
pure x = Just x
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

What we get for chaining actions?

*Main> (+1) `fmap` ((*2) `fmap` ((+3) `fmap` (Just 1)))
Just 9
Main> (+) <$> (Just 1) <> (Just 2)
Just 3

Marek Běhálek (VSB-TUO) Advanced Functional Programming 21 / 52

Monads

Monads (7)

If we have Monad, we also have Functor and Applicative.
fmap fab ma = ma >>= (\x -> return (fab x)) -- (return.fab)
pure a = return a
mfab <*> ma = mfab >>= (\ fab -> ma >>= (return . fab))

Marek Běhálek (VSB-TUO) Advanced Functional Programming 22 / 52

Monads / List Monad

List Monad (1)

Nice example of a monad is the list.
Informally, required operations are
implemented:
myFmap :: (a -> b) -> [a] -> [b]
myFmap = map

myApply :: [a -> b] -> [a] -> [b]
myApply fs xs = [f x | f <- fs, x <- xs]

myBind :: [a] -> (a -> [b]) -> [b]
myBind xs f = concat (map f xs)

Now, we can observe, what we can do

with such defined operators.

*Main> (+1) <$> [1,2,3]
[2,3,4]
Main> (+) <$> [1,2,3] <> [1,2,3]
[2,3,4,3,4,5,4,5,6]
*Main> [1,2] >>= \n -> ['a','b']

>>= \ch -> [(n,ch)]
[(1,'a'),(1,'b'),(2,'a'),(2,'b')]
*Main> [3,4,5] >>= (return . (+1))

>>= (return . (*2))
[8,10,12]

Marek Běhálek (VSB-TUO) Advanced Functional Programming 23 / 52

Monads / List Monad

List Monad (2)

Consider following variants for a function finding Pythagoras triplets.
pythagoreanTriples :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples n =

[1 .. n] >>= (\x ->
[x+1 .. n] >>= (\y ->
[y+1 .. n] >>= (\z ->
if x^2 + y^2 == z^2 then return (x,y,z) else [])))

pythagoreanTriples' :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples' n = do x <- [1 .. n]

y <- [x+1 .. n]
z <- [y+1 .. n]
if x^2 + y^2 == z^2 then return (x,y,z) else []

pythagoreanTriples'' :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples'' n =

[(x,y,z) | x <- [1 .. n], y <- [x+1 .. n], z <- [y+1 .. n], x^2 + y^2 == z^2]

Marek Běhálek (VSB-TUO) Advanced Functional Programming 24 / 52

IO Monad

IO Monad (1)

This part is for programmers, that do not care about a theory.
There is a special type () with only value () called unit type - representing a sort of
dummy value.
All input and output actions can be recognized by having IO in their type definition.

Input: getLine :: IO String
Output: putStr :: String -> IO ()
Usually, when we are talking about monads, we say, that they represents some sort of
containers → better intuition for IO is: bake :: Recipe Cake.

You can glue these actions by syntax construct: do.
How to get value from/to IO?

There is a syntactic construct in do (called bind): x <- action, where if
action :: IO a, then the type of variable x is a.
There is a function return :: a -> IO a, it can be used to put a common value into IO.

Finally, the function main has a type: main :: IO a
And that is all, Is it clear?

Marek Běhálek (VSB-TUO) Advanced Functional Programming 25 / 52

IO Monad

IO Monad (2)

Simple example:
main = do

putStrLn "Hello, what's your name?"
name <- getLine
let bigName = map toUpper name
putStrLn ("Hey " ++ bigName ++ ", you rock!")

Now, we can compile it and execute.

PS C:\> ghc .\test.hs
[1 of 1] Compiling Main (test.hs, test.o)
Linking test.exe ...
PS C:\> .\test.exe
Hello, what's your name?
Marek
Hey MAREK, you rock!

Marek Běhálek (VSB-TUO) Advanced Functional Programming 26 / 52

IO Monad

IO Monad (3)

The construct do is just an expression, we can use it in the same way...
main = do

line <- getLine
if null line

then return ()
else do

print $ reverseWords line
main

reverseWords :: String -> String
reverseWords = unwords . map reverse . words

You should notice, that return does not end the function like in common languages.
main = do

a <- return "hell"
b <- return "yeah!"
putStrLn $ a ++ " " ++ b

Marek Běhálek (VSB-TUO) Advanced Functional Programming 27 / 52

IO Monad

From IO Monad to State?

In previous part, we have introduced a mechanism how actions can be chained → nicer
way how to write it.
But we have started with the idea, that impure actions (manipulating with state) will be
solved with monads.
Our example was IO Monad that solves input - output operations.
-- inputLine :: String
getLine :: IO String
putStr :: String -> IO ()

do x <- getLine
putStr x -- y <- putStr x, y == ()

ready :: IO Bool
ready = do c <- getChar

return (c == 'y')

Nice example what getLine :: IO String is: bake :: Recipe Cake.
Marek Běhálek (VSB-TUO) Advanced Functional Programming 28 / 52

IO Monad / State Monads

State Monad (1)

How does it work? The idea is captured in more general monad that captures state.
Lets first focuse on the idea → state manipulation can be captured like a function taking
original state and producing a pair (some value, new state).
type SimpleState s a = s -> (s, a)

retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)

Now, lets create a simple input containing a list of integers (our state is just this list).
type ListInput a = SimpleState [Int] a

readInt :: ListInput Int
readInt stateList = (tail stateList, head stateList)

Marek Běhálek (VSB-TUO) Advanced Functional Programming 29 / 52

IO Monad / State Monads

State Monad (2)

Finally, lets try to make a function chaining actions (like >>=).
bind :: (s -> (s,a)) -- SimleState s a

-> (a -> (s -> (s, b))) -- a -> SimpleState s b
-> s -> (s, b) -- SimpleState s b

bind step makeStep oldState =
let (newState, result) = step oldState
in (makeStep result) newState

Finally, we can bind actions as with monads.

*Main> (readInt `bind` \a->readInt `bind` (\b->retSt (a+b))) [1,2,3]
([3],3)

In our example, we have created a function defining what to do with the input. When it
is executed it bakes the result. If provided the same ingredients, it bakes the same result.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 30 / 52

IO Monad / State Monads

State Monad (3)

What if we want to realy make it a part of Monad type class (it will not work for type
synonym)?
newtype State s a = State { runState :: s -> (s, a) }

readInt' :: State [Int] Int
readInt' = State {runState = \s->(tail s, head s)}

instance Functor (State s) where
fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)

instance Applicative (State s) where
pure a = State (\s->(s,a))
f <*> m = State $ \s-> let (s',f') = runState f s

(s'',a) = runState m s' in (s'',f' a)
instance Monad (State s) where

return a = State (\s->(s,a))
m >>= k = State $ \s -> let (s',a) = runState m s in runState (k a) s'

Marek Běhálek (VSB-TUO) Advanced Functional Programming 31 / 52

IO Monad / State Monads

State Monad (4)

We can even use do syntax now.
add :: State [Int] Int
add = do x<-readInt'

y<-readInt'
return (x+y)

Examples, how to use this state monad:

*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
([3],3)
*Main> runState add [1,2,3]
([3],3)

Finally, assuming we have RealWorld, we ca define type IO as:
type IO a = State RealWorld a
--getChar :: RealWorld -> (RealWorld, Char)
--main :: RealWorld -> (RealWorld, ())

Marek Běhálek (VSB-TUO) Advanced Functional Programming 32 / 52

IO Monad / Monads in C#

Monads in C#(1)

Can we implement the same ideas in C#?
Lets start with something simple, function composition.
public static Func<A, C> After<A, B, C>(this Func<B, C> f, Func<A, B> g)

=> value => f(g(value));

public static Func<A,C> Composition<A, B, C>(Func<B, C> f, Func<A, B> g)
=> value => f(g(value));

Func<string, int> parse = int.Parse; // string -> int
Func<int, int> abs = Math.Abs; // int -> int

Func<string, int> composition1 = abs.After(parse);
Func<string, int> composition2 = Composition(abs, parse);

Marek Běhálek (VSB-TUO) Advanced Functional Programming 33 / 52

IO Monad / Monads in C#

Monads in C#(2)

What if we want to have Maybe monad (there are various possible solutions).
public abstract class Maybe<A> {}

public class Just<T> : Maybe<T> { public T Value { get; init; } }
public class Nothing<T> : Maybe<T> {}

public static Maybe<A> Return<A>(this A value) => new Just<A> { Value = value };

public static Maybe Bind<A, B>(this Maybe<A> x, Func<A, Maybe> f) => x switch
{

Nothing<A> => new Nothing(),
Just<A> value => f(value.Value),
_ => throw new Exception("Unexpected value.")

};

Marek Běhálek (VSB-TUO) Advanced Functional Programming 34 / 52

IO Monad / Monads in C#

Monads in C#(3)

Now, we can chain actions as before in Haskell.
var result2 = new Just<int>() { Value = 1 }

.Bind(x => new Just<int> { Value = x + 1 })

.Bind(x => new Just<string>() { Value = "Value: " + x });

Even more, C# have something called query syntax.
It is related to LINQ, it uses a syntax similar to SQL, but it is also convenient when we
threat IEnumerable as a monad.
It requires to define: Select, SelectMany

public Maybe SelectMany(Func<A, Maybe> f) => (Maybe)this.Bind(f);

public Maybe<C> SelectMany<B, C>(Func<A, Maybe> f, Func<A, B, C> resultSelector)
=> (Maybe<C>)this.Bind(x => f(x).Bind(y => Return(resultSelector(x, y))));

var test = from x in new Just<int> { Value = 1 }
from y in new Just<int> { Value = 2 }
select x + y;

Marek Běhálek (VSB-TUO) Advanced Functional Programming 35 / 52

IO Monad / Monads in C#

Monads in C#(4)

What about State monad, is it possible to define them in C#?
public delegate (TState State, T Value) State<TState, T>(TState state);

public static State<TState, C> SelectMany<TState, A, B, C>(
this State<TState, A> source,
Func<A, State<TState, B>> selector,
Func<A, B, C> resultSelector) =>

oldState => {
(TState State, A Value) value = source(oldState);
(TState State, B Value) result = selector(value.Value)(value.State);
return (result.State, resultSelector(value.Value, result.Value));

};

Marek Běhálek (VSB-TUO) Advanced Functional Programming 36 / 52

IO Monad / Monads in C#

Monads in C#(5)

Now, the usage in fact compose from two parts, first we are creating the function then
we are executing it with chosen state (list of numbers in our case).
(List<int>, int Max) FindMax(List<int> list) =>

(list.Where(x => x != list.Max()).ToList(), list.Max());
(List<int>, int Min) FindMin(List<int> list) =>

(list.Where(x => x != list.Min()).ToList(), list.Min());

State<List<int>, string> query =
from max in (State<List<int>,int>)(oldState => FindMax(oldState))
from min in (State<List<int>, int>)(FindMin)
from count in (State<List<int>, int>)(oldState => (oldState, oldState.Count))
select $"Max {max}, Min {min}, beside {count} elements.";

var (_, Value) = query(new List<int>{ 7,1,2,3,5});

The result in Value will be:

Max 7, Min 1, beside 3 elements.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 37 / 52

Advantages of functional style programming

Advantages of functional style programming I

In current popular programming languages, usage of functional programming style
depends on programmer.

Today’s most popular programming languages support multiple programming paradigms.
Functional style of programming can be easily applied in most of them.
Moreover, we can use even some fundamental functional concepts like monads.
And if we need mutable data or side-effect → no big deal, even Haskell have them.

Big question that needs to be addressed is: What will be the gain, if i use functional
style of programming?
(Personal opinion) Functional programs are often shorter and more concise → easier to
comprehend → easier to maintain.

Recursion is simpler, though not necessarily easier to learn.
Function signatures are more meaningful.

No Fewer side effects (immutable data, pure functions)
Easier for concurrent execution.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 38 / 52

Advantages of functional style programming

Advantages of functional style programming II

Much simpler testing → possible are even concepts like proving programs properties.
More error prone → Haskell’s type system captures a lot of errors → huge difference in
run-time errors.

New features like: lazy evaluation, infinite structures,

Guidelines to the usage of functional programming
Like other style of programming, it does not solve all problems.
Like in other areas, benefits should overweight the costs.
We get mentioned benefits, even if just a part of the solution uses functional style of
programming.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 39 / 52

Software Verification and Validation

Software Verification and Validation - what it is about? I

Software engineering is the systematic application of engineering approaches to the
development of software.

Verification → Are we building the product right? → The process of evaluating software
to determine whether the products of a given development phase satisfy the conditions
imposed at the start of that phase.
Validation → Are we building the right product? → The process of evaluating software
during or at the end of the development process to determine whether it satisfies specified
requirements.

We have plenty of of strategies and methodologies to software development →
determines how and when validation and verification are conducted.
The most common strategy how it conducted is some sort of testing
(https://en.wikipedia.org/wiki/V-Model_(software_development)).
Probably, the most basic form of testing are unit tests.

In the V-Model, unit tests eliminates bugs at code level or unit level (module, class,..). It
verifies that an isolated unit is working correctly.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 40 / 52

https://en.wikipedia.org/wiki/V-Model_(software_development)

Software Verification and Validation

Unit Tests

Unit tests are written by a programmer
that have created the unit.
Most common units in OOP are classes.
There are plenty of tool helping with unit
test.

Most basic toolkit usually represents
XUnit: JUnit-Java, NUnit-C#,
HUnit-Haskell...
Such tool is in fact a library allowing
the test definition and containing some
useful infrastructure.
Units testing is integrated for example
in Visual Studio (helps with test
creation, environment to execute and
maintain tests).

[TestClass()]
public class StackTests
{

[TestMethod()]
public void PopTest()
{

Stack<int> s = new Stack<int>();
s.Push(1);
Assert.AreEqual(

s.Pop(),
1,
"Value in stack should be 1.");

}
[TestMethod()]
public void PushTest() { }

}

Marek Běhálek (VSB-TUO) Advanced Functional Programming 41 / 52

Software Verification and Validation

Unit Tests - difficulties

What it takes to write a good test? Was our previous example OK? → Write a good test
is not an easy task.
Moreover, what if the tested function uses database or some device? What if we have a
complex application relaying on some third party components? → test fixtures
How meaningful is then the function’s type definition?

If we have no side effects → all we need is to prepare the input → all changes are
encapsulated in the result

What if the function have some side effects?
What we really need to test?
How do we even prepare the test? How do we prepare some state of the system?
How do we check if the result fulfils the requirements?

Even in pure functional languages, there are side effects, but the are bounded (monads in
Haskell).

Marek Běhálek (VSB-TUO) Advanced Functional Programming 42 / 52

Reasoning about programs

Reasoning about programs

OK, functional languages have mathematical background, but is this any good for me (I
am a programmer, not mathematician;-)?
Formal definition of language semantic allows to prove program’s properties → more
trustworthy then just some tests.

Emended systems, automotive, ...
Tools: Formal proof management system Coq https://coq.inria.fr/ → based on
richly-typed functional programming language Gallina

CompCert - verification of C programs
Extract certified programs to Haskell

Mathematical induction (informally)
Prove for n = 0 (base case)
On assumption that it holds for n, prove that it holds for n+1

Principle of structural induction for lists – we want to prove property P
Base case – prove P for [] outright.
Prove P for (x:xs) on assumption that P holds for xs.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 43 / 52

https://coq.inria.fr/

Reasoning about programs

Reasoning about programs - Example (1)

We want to prove: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

We start with equations from the source code.
[] ++ ys = ys -- ++.1
(x:xs) ++ ys = x: (xs ++ ys) -- ++.2

Now we can start proving (using mathematical induction).
-- a) [] => xs
([] ++ ys) ++ zs
= ys ++ zs -- ++.1
= [] ++ (ys ++ zs) -- ++.1
-- b) (x:xs) => xs
((x:xs)++ys)++zs
= x:(xs++ys)++zs -- ++.2
= x:((xs++ys)++zs) -- ++.2
= x:(xs++(ys++zs)) -- assumption
= (x:xs)++(ys++zs) -- ++.2

Marek Běhálek (VSB-TUO) Advanced Functional Programming 44 / 52

Reasoning about programs

Reasoning about programs - Example (2)

Better example: (length (xs++ys) = length xs + length ys
We start with equations from the source code.
length [] = 0 --len.1
length (_:xs) = 1 + length xs --len.2

Now we can start proving (using mathematical induction).
-- a) [] => xs
length ([] ++ ys)
= length ys -- ++.1
= 0 + length ys -- + zero element
= length [] + length ys -- len.1
-- b) (x:xs) => xs
length ((x:xs) ++ ys)
= length (x:(xs++ys) -- ++.2
= 1 + length (xs++ys) -- len.2
= 1 + (length xs + length ys) -- assumption)
= (1 + length xs) + length ys -- associativity of +
= length (x:xs) + length ys -- len.2

Marek Běhálek (VSB-TUO) Advanced Functional Programming 45 / 52

Lambda calculus

Lambda calculus I

λ− calculus is a formal system in mathematical logic for expressing computation based
on function abstraction and application using variable binding and substitution (wiki).

It was invented in 1930s by Alonzo Church.

Universal model of computation, as good as Turing machine → all that can be compute
by Turing machine can be expressed in λ− calculus → roughly, this corresponds to
problems that can be solved by a computer.
Omitting many details, theoretical background for all functional programming languages.

Originally λ− calculus is untyped → in programming we need types → not that easy to
add them.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 46 / 52

Lambda calculus

Lambda calculus - simplified definition

Syntax (how it is written) - a lambda term is:
x, y, z... - variables, representing a parameter or mathematical/logical value.
(λx.M) - abstraction, M is a lambda term, the variable x becomes bound in the expression.
(MN) - application, applying a function to an argument. M and N are lambda terms.

Semantics (how to compute it)
α− conversion : (λx.M [x]) → (λy.M [y]) - renaming the bound variables in the
expression. Used to avoid name collisions.
β − reduction : ((λx.M)E) → (M [x := E]) -replacing the bound variables with the
argument expression in the body of the abstraction (this really moves forward the
computation).
η − reduction : ((λx.fx) → f - expresses the idea of extensionality (two functions are the
same if and only if they give the same result for all arguments).

Marek Běhálek (VSB-TUO) Advanced Functional Programming 47 / 52

Lambda calculus

Lambda calculus - normal form

Redex - Reducible Expression - expression that can be reduced with defined rules.
α− redex, β − redex

Church–Rosser theorem - when applying reduction rules to terms, the ordering in which
the reductions are chosen does not make a difference to the eventual result.
In other words, if there are two distinct reductions or sequences of reductions that can be
applied to the same term, then there exists a term that is reachable from both results.
Normal form - expression that contains no β − redex.

42, (2, "hello"), \x -> (x + 1)

Haskell uses weak head normal form - stops when head is a lambda abstraction or a
data constructor.

(1 + 1, 2 + 2), \x -> 2 + 2,'h' : ("e" ++ "llo").

The question that remains is, how do we get the weak head normal form?

Marek Běhálek (VSB-TUO) Advanced Functional Programming 48 / 52

Lazy evaluation

Lazy evaluation - what are our option for evaluation strategies?

When choosing an evaluation strategy for expressions in languages like Haskell, what are
key factors?

Evaluation order - which reductions are performed first (inner-most, outer-most)
How do we pass parameters to a function - by value, by name, by reference, by need...

Function f is strict when and only when: f⊥ = ⊥
Strict evaluation - function’s arguments are evaluated completely before the function is
applied.

innermost reduction, eager evaluation or greedy evaluation
Sometime also Call by value - it requires strict evaluation, arguments are passed as
evaluated values.
It is used by most programming languages: Java, C#, F#, OCalm, Scheme...

Non-strict evaluation - a function may return a result before all of its arguments are fully
evaluated.

outer-most reduction, normal order evaluation (does not evaluate any of the arguments
until they are needed in the body of the function).

Marek Běhálek (VSB-TUO) Advanced Functional Programming 49 / 52

Lazy evaluation

Lazy evaluation (1)

Lazy evaluation - When we are lazy enough, to call our evaluation lazy?
Sub-expressions will be evaluated only when they are needed for in evaluation.
If they are evaluated, they are evaluated only once.

In pure functional languages, if we use outer-most reduction, we are doing normal order
evaluation → only needed sub-expressions are evaluated, only needed arguments are
evaluated.
In pure functional languages, to be lazy enough, all we need is some clever way, how to
pass arguments → call by need.

Used in Haskell, option in OCalm, Scheme, some languages simulate lazy behaviour for
some sub-systems.

In pure functional languages, the terms lazy evaluation, call by need, or non-strict
evaluation mean the same thing.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 50 / 52

Lazy evaluation

Lazy evaluation (2)

Eager evaluation
square(1+2)
square(3)
3*3
9

Lazy evaluation
square(1+2)
let x = 1+2 in x*x
let x = 3 in x*x
3*3
9

Marek Běhálek (VSB-TUO) Advanced Functional Programming 51 / 52

Lazy evaluation

Advantages of Lazy evaluation

If an expression has a normal form, it will be reached by lazy evaluation strategy (theory
nonsense:-).
It allows to use new concepts, like infinite structures or functions → new way how to
solve a problem (i still wont use it:-).
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
It is useful when processing (large) data (LINQ, Apache Spark,..)

Consider following example:
map (\x->x^4) (concat (map (\x->[1..x]) [1..10]))
Will be the intermediate results constructed?
In fact, we are continually getting items from the final list!
How the equivalent in C++ will look like?

We need to sacrifice code clarity, or all intermediate results will be computed before we get
some result.

Marek Běhálek (VSB-TUO) Advanced Functional Programming 52 / 52

Lazy evaluation

Thank you for your attention

Marek Běhálek

VSB – Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

	Application of Functional Style of Programming
	Immutable data types
	Functions with No Side Effects
	Motivation for monads
	Monads
	List Monad

	IO Monad
	State Monads
	Monads in C#

	Advantages of functional style programming
	Software Verification and Validation
	Reasoning about programs
	Lambda calculus
	Lazy evaluation

