VSB TECHNICKA VSB TECHNICAL
” ” UNIVERZITA “ ” UNIVERSITY
OSTRAVA [" oF osTRAVA

www.vsb.cz

Advanced Functional Programming

behalek.cs.vsb.cz/wiki/Functional Programming

Marek Béhalek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
OF OSTRAVA | SCIENCE SCIENCE

Application of Functional Style of = State Monads

Programming = Monads in C#
Immutable data types Advantages of functional style
Functions with No Side Effects programming
Motivation for monads El Software Verification and Validation
Monads El Reasoning about programs

m List Monad Lambda calculus
@ 10 Monad Lazy evaluation

Marek Behalek (VSB-TUO) Advanced Functional Programming

Functional programming |||||

m Declarative style of programming
m We define what needs to be computed, a run-time environment responsibility is how it will
be evaluated.
m Similar to math, we have various rules how to simplify an expression, but there are different
ways how these rules can be applied for given expression.
m Programming with expressions (no statements)
m Functional program is a set of function's definitions.
m Functions are first class citizens - a function can return a function, high-order functions,
partially evaluated functions.
m Program’s evaluation is the evaluation of some main expression.
m Immutable data structures - once created data can not be changed.
= No side effects (if possible)
m Functions only return values, no changes other changes.
m For the same parameters, we always get the same result (referential transparency).

m Sometimes side effects can not be avoided (input - output operations) - programming with
actions.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Functional programming vs OOP |||||

m Today, probably the most popular programming style is Object Oriented Programming.
m Object Oriented Programming - objects and (most often) classes

m Encapsulation - data are hidden inside and are accessible only trough given interface.

m Abstraction - objects can be black boxes and we can use them even if do not know how
they are working inside (works for most programming styles).

m Composition, inheritance, and delegation - objects can be white boxes and new objects can
be created with/based on existing objects.

m Polymorphism - in OOP, it is usually refering to a situation, when calling code can be
agnostic as to which class in the supported hierarchy it is operating on.

m Object-oriented programming makes code understandable by encapsulating moving parts.

Functional programming makes code understandable by minimizing moving parts. (M.
Feathers)

Marek Behalek (VSB-TUO) Advanced Functional Programming

Application of Functional Style of Programming

Functional programming in popular languages |||||

m OK, but what if | do NOT want to use Haskell?
m Today's most popular programming languages are mostly multi-paradigm languages —
they support various style of programming.
m What we really need for functional style of programming?
m Functions - they are there, side effects are mostly optional.
m Recursion - widely supported in all relevant languages.
m What if we have a cycle inside in a function, is this a problem?
m Functions as first class citizens - more of a problem, but most languages covers this.
m Immutable data types - a choice of a programmer.
m A strong type system to capture errors.
m Notable items on a nice to have list
m Algebraic data types - rare, in OOP some solution can be inheritance.
m Higher-kinded polymorphism - bigger issue, partially can be solved by generic data types.

m In C# we have: delegates, lambda expressions, pattern matching, tuples...

Marek Behalek (VSB-TUO) Advanced Functional Programming

Immutable data types - Haskell |||||

module Stack (Stack (..), push, pop, isEmpty, empty) where
data Stack a = Stack [a] deriving Show

push :: a -> Stack a -> Stack a
push x (Stack xs) = Stack (x:xs)

pop :: Stack a -> (a,Stack a)
pop (Stack (x:xs)) = (a, Stack xs)

isEmpty (Stack []) = True
isEmpty _ = False

empty = Stack []

Marek Behalek (VSB-TUO) Advanced Functional Programming 5 /52

Mutable data types |||||

public class Stack<T> T item = datal[data.Count-1];
{ data.RemoveAt (data.Count-1);
private List<T> data; return item;
}
public Stack()
{ static void Main(stringl[] args)
data = new List<T>(); {
} Stack<int> stack =
new Stack<int>();
public void Push(T item) stack.Push(1);
{ stack.Push(2);
data.Add(item); var x = stack.Pop();
} Console.WriteLine(x);
}
public T Pop() }
{

Marek Behalek (VSB-TUO) Advanced Functional Programming

Immutable solution in C# (1) |||||

public class NewStack<T>

{

private T Data { get; init; }

private NewStack<T> Next { get; init; }
private NewStack() { }

static public NewStack<T> Empty() => null;
static public bool IsEmpty(NewStack<T> stack) => stack == null;

static public NewStack<T> Push(NewStack<T> stack, T item) =>
new NewStack<T> { Data = item, Next = stack };

static public (T Item, NewStack<T> Stack) Pop(NewStack<T> stack) =>
(IsEmpty(stack)) ? throw new Exception("Empty stack.") : (stack.Data, stack.Next);

Marek Behalek (VSB-TUO) Advanced Functional Programming 7 /52

Immutable solution in C# (2) |||||

static void Main(string[] args)

{
NewStack<int> newStack = NewStack<int>.Empty();
newStack = NewStack<int>.Push(newStack, 1);
newStack = NewStack<int>.Push(newStack, 2);
(x,newStack) = NewStack<int>.Pop(newStack);
Console.WriteLine(x);

}

Marek Behalek (VSB-TUO) Advanced Functional Programming

Immutable data types

Immutable array |||||

m Sometimes they are called persistent data structures.
m https://en.wikipedia.org/wiki/Persistent_data_structure

m https://en.wikipedia.org/wiki/Persistent_array

[T [IT]

E[ELl M DI ElfE]

Figure: An idea how to implement immutable array.

Marek Behalek (VSB-TUO) Advanced Functional Programming

https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_array

Immutable data types

Immutable data types |||||

m Immutable data types
m Studied problem, plenty of posibilities.
m Common in APl of many languages (C#: string, DateTime,
https://wuw.nuget.org/packages/System.Collections. Immutable/).

m What if | really need mutable data structure?

m For example quick implementation of quicksort?

= No big deal, even Haskell has them.

® https://hackage.haskell.org/package/vector-0.12.3.1/docs/
Data-Vector-Unboxed-Mutable.html

® https://koerbitz.me/posts/Efficient-Quicksort-in-Haskell.html

Marek Behalek (VSB-TUO) Advanced Functional Programming

https://www.nuget.org/packages/System.Collections.Immutable/
https://hackage.haskell.org/package/vector-0.12.3.1/docs/Data-Vector-Unboxed-Mutable.html
https://hackage.haskell.org/package/vector-0.12.3.1/docs/Data-Vector-Unboxed-Mutable.html
https://koerbitz.me/posts/Efficient-Quicksort-in-Haskell.html

Functions with No Side Effects (1) |||||

m What are side effects, how do i recognise them?

public double Add(double a, double b) {
return a + b;

}
public double Add2(double a, double b) {
try {
Console.WriteLine(@"a={a}, b={b}");
} catch (Exception ex) { }
return a + b;
}

public int Divide(int a, int b) {
return a / b;

}

Marek Behalek (VSB-TUO) Advanced Functional Programming 11 / 52

Functions with No Side Effects (2) |||||

m How can | avoid them? public class NonZeroInteger {

public int? Divide2(int a, int b) { public int Number { get; }

if (b == 0)

return null; public NonZeroInteger (int number) {

return a / b; Number = number;

} if (number == 0)
throw new ArgumentException();

public int Divide3(int a, NonZeroInteger b) { }

return a / b.Number; }
}

Marek Behalek (VSB-TUO) Advanced Functional Programming 12 / 52

Functions with No Side Effects (3) |||||

m What if they can not be avoided? m From the theory, there are some rules
m For example input - output operations? that a programmer should obey, but
inputInt :: Int even Haskell can not enforce them.
m Functor — Applicative functor —
inputDiff = inputInt - inputInt Monad
funny :: Int-> Int m Informally, monads are a sort of pure
funny n = inputInt + n functional envelop for non-pure actions.
m Library functions like: Datetime.Now
m Haskell uses monads to solve this issue. m Practically, its a set of design patterns
m Think from category theory — solving plenty of situations that are
theoretical aspects are beyond the frequently occurring in practice.
scope of this presentations.
m Monad is a monoid in the category of m For example in C#f, these principles are
endo-functors. used for LINQ.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Motivation (1) |||||

m Complicated theory, but really it solves some practical issues.

m Lets start with data type Maybe
data Maybe a = Nothing | Just a

betterDiv :: Int -> Int -> Maybe Int
betterDiv x y | y==0 = Nothing
| otherwise = Just (x ~div™ y)

m Now we want to compute some expressions where we use it like a value type.

data Expr = Num Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

Marek Behalek (VSB-TUO) Advanced Functional Programming 14 / 52

Motivation (2) |||||

= Now we need to compute such expression
eval :: Expr -> Maybe Int
eval (Num x) = Just x
eval (Div x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of
Nothing -> Nothing
Just y' -> betterDiv x' y'
eval (Add x y) = case eval x of
Nothing -> Nothing
Just x' -> case eval y of
Nothing -> Nothing
Just y' -> Just (x' +y")

m We can see emerging patter, how actions are linked one after the other.

Marek Behalek (VSB-TUO) Advanced Functional Programming

e
Monads (1) |||||

New functions are produced like a composition of functions — important abstraction
mechanism. (.) :: (b ->¢c) -> (a ->b) ->a -> ¢

The ordering of functions does not matter, we can introduce:

>.>) :: (a->b) > (b ->c) >a->c

We want to have something similar to that for our Functor class. How the functions
from our examples looked liked?

eval :: Expr -> Maybe Int

compare :: Int -> Maybe Bool
m So, to be able to compose such functions, we need something like:
(>=>) :: Monad m => (a ->mb) -> (b ->mc) ->a->mc
m Consider, we have an operator >>= (bind): (>>=) :: ma -> (a ->mb) ->mb

m Then it is easy, operator >=> (Fish operator, Klesli category) can be defined as:

f O=>)g=\a->1letmb=1*fa
in mb >>= g

Marek Behalek (VSB-TUO) Advanced Functional Programming

e
Monads (2) |||||

m OK, we have eliminated some unnecessary staff, but we still need:
(>>=) ::ma->(a->mb) ->m b, right?
m That is precisely how monads are defined in Haskell.
class Applicative f => Monad f where
G>=) :: fa->(@->fb) >fhb
return :: a -> f a
m The final step will be defining monad for our type Maybe.

class Monad Maybe where
Just x >>=f =f x
Nothing >>= f£

Nothing

return x = Just x

Marek Behalek (VSB-TUO) Advanced Functional Programming 17 / 52

Monads

Monads (3) Iyl

m Now, we can chain actions better.

m We can even solve our original problem!

Marek Behalek (VSB-TUO) Advanced Functional Programming

e
Monads (4)

m Solving maybe expressions with monads.

eval ::

eval
eval
eval
eval

eval

Marek Behalek (VSB-TUO)

Expr -> Maybe Int
(Num x) = return x
(Div x y) = eval x >>= (\x' -> eval y >>= (\y' -> betterDiv x' y'))
(Add x y) = eval x >>= \x' -> eval y >>= \y' -> return (x'+ y')
(Mul x y) = eval x >>=
\x' -> eval y >>=
\y' -> return (x'* y')
(Sub x y) = do x' <- eval x

y' <- eval y
return (x'- y')

Advanced Functional Programming 19 / 52

Monads (5) Iyl

m What are restrictions placed on Monads?
m What type of a type (it is called kind in Haskell) is Maybe

m If we check the kind of Monad you get: (* -> %) -> Constraint.
m Monad definition contains Applicative
class Functor f where
fmap :: (@ ->b) >fa->fb--$%::(a->b) ->a->b
class Functor f => Applicative f where
pure :: a -> f a
(<x>) :: f (a->b) >fa->Ffhb

Marek Behalek (VSB-TUO) Advanced Functional Programming 20 / 52

Monads (6) Iyl

= Now, we can add type Maybe into these type classes.
instance Functor Maybe where
fmap £ (Just x) = Just (f %)
fmap _ Nothing = Nothing
instance Applicative Maybe where
pure x = Just x
(Just f) <x> (Just x) = Just (f x)
_ <*> _ = Nothing

= What we get for chaining actions?

Marek Behalek (VSB-TUO) Advanced Functional Programming 21 / 52

SMemsds
Monads (7) |||||

m If we have Monad, we also have Functor and Applicative.
fmap fab ma = ma >>= (\x -> return (fab x)) -- (return.fab)
pure a = return a
mfab <*> ma mfab >>= (\ fab -> ma >>= (return . fab))

Marek Behalek (VSB-TUO) Advanced Functional Programming 22 / 52

List Monad (1) |||||

= Nice example of a monad is the list. with such defined operators.
Informally, required operations are

implemented: i () S [Ho2E]

[2,3,4]
myFmap _ (a -> b) -> [a] -> [b] Kiain> (+) <$> [1,2,3] <> [1,2,3]
myFmap = map (2,3,4,3,4,5,4,5,6]

Mai 1,2 = _ 'a','b’
myApply :: [a -> b] -> [a] -> [b] T 2 ;; t::h i>[[?n,ch)}
myApply fs xs = [f x | £ <- fs, x <- xs] [(1,'a'),(1,'b'),(2,'a"), (2, 'b")]

*Main> [3,4,5] >>= (return . (+1))

myBind :: [a]l -> (a -> [b]) -> [b] >>= (return . (*2))

myBind xs f = concat (map f xs) [8,10,12]
= Now, we can observe, what we can do

Marek Behalek (VSB-TUO) Advanced Functional Programming

List Monad (2) |||||

m Consider following variants for a function finding Pythagoras triplets.
pythagoreanTriples :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples n =

[1 .. n] >= (\x >

[x+1 .. n] >>= (\y ->

[y+1 .. n] >>= (\z ->

if x72 + y~2 == z~2 then return (x,y,z) else [1)))

pythagoreanTriples' :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples' n = do x <- [1 .. n]

y <- [x+1 .. n]

z <- [y+1 .. n]

if x72 + y~2 == z~2 then return (x,y,z) else []

pythagoreanTriples'' :: Integer -> [(Integer, Integer, Integer)]
pythagoreanTriples'' n =
[(x,y,2) | x<- [1 ..n]l, y<- [x+1 .. n], z <- [y+*1 .. n], x72 + y°2 == z"2]

Marek Behalek (VSB-TUO) Advanced Functional Programming 24 / 52

IO Monad (1) |||||

m This part is for programmers, that do not care about a theory.
m There is a special type () with only value () called unit type - representing a sort of
dummy value.
= All input and output actions can be recognized by having I0 in their type definition.
® Input: getLine :: IO String
m Output: putStr :: String -> I0 ()
m Usually, when we are talking about monads, we say, that they represents some sort of
containers — better intuition for I0 is: bake :: Recipe Cake.
m You can glue these actions by syntax construct: do.
= How to get value from/to 107
m There is a syntactic construct in do (called bind): x <- action, where if

action :: IO a, then the type of variable z is a.
m There is a function return :: a -> I0 a, it can be used to put a common value into I0.
m Finally, the function main has a type: main :: I0 a

m And that is all, Is it clear?

Marek Behalek (VSB-TUO) Advanced Functional Programming

IO Monad (2) |I|I|

m Simple example:
main = do
putStrLn "Hello, what's your name?"
name <- getLine
let bigName = map toUpper name
putStrLn ("Hey " ++ bigName ++ ", you rock!")

m Now, we can compile it and execute.

Marek Behalek (VSB-TUO) Advanced Functional Programming 26 / 52

IO Monad (3) |||||

m The construct do is just an expression, we can use it in the same way...
main = do
line <- getLine
if null line
then return ()

else do
print $ reverseWords line
main
reverseWords :: String -> String

reverseWords = unwords . map reverse . words

m You should notice, that return does not end the function like in common languages.
main = do
a <- return "hell"
b <- return "yeah!"
putStrln $ a ++ " " ++ b

Marek Behalek (VSB-TUO) Advanced Functional Programming 27 / 52

10 Monad

From 10 Monad to State? |||||

m In previous part, we have introduced a mechanism how actions can be chained — nicer
way how to write it.

m But we have started with the idea, that impure actions (manipulating with state) will be
solved with monads.

m Our example was |O Monad that solves input - output operations.
-- inputline :: String
getline :: I0 String
putStr :: String -> I0 ()

do x <- getLine
putStr x -- y <- putStr x, y == (O

ready :: I0 Bool
ready = do c <- getChar
return (c == 'y')

m Nice example what getLine :: I0 String is: bake :: Recipe Cake.

Marek Behalek (VSB-TUO) Advanced Functional Programming

State Monad (1) |||||

m How does it work? The idea is captured in more general monad that captures state.

m Lets first focuse on the idea — state manipulation can be captured like a function taking
original state and producing a pair (some value, new state).

type SimpleState s a = s -> (s, a)

retSt :: a -> SimpleState s a
--retSt a s = (s,a)
retSt a = \s -> (s,a)
= Now, lets create a simple input containing a list of integers (our state is just this list).
type ListInput a = SimpleState [Int] a

readInt :: ListInput Int
readInt statelList = (tail statelList, head statelList)

Marek Behalek (VSB-TUO) Advanced Functional Programming

State Monad (2) |||||

m Finally, lets try to make a function chaining actions (like >>=).

bind :: (s -> (s,a)) -- SimleState s a
-> (a -> (s -> (s, b))) -- a -> SimpleState s b
-> s -> (s, b) -- SimpleState s b

bind step makeStep oldState =
let (newState, result) = step oldState
in (makeStep result) newState

m Finally, we can bind actions as with monads.

*Main> (readInt ~bind ™ \a->readInt “bind~ (\b->retSt (at+b))) [1,2,3]
([31,3)

m In our example, we have created a function defining what to do with the input. When it
is executed it bakes the result. If provided the same ingredients, it bakes the same result.

Marek Behalek (VSB-TUO) Advanced Functional Programming

State Monad (3) |||||

m What if we want to realy make it a part of Monad type class (it will not work for type

synonym)?
newtype State s a = State { runState :: s -> (s, a) }
readInt' :: State [Int] Int

readInt' = State {runState = \s->(tail s, head s)}

instance Functor (State s) where
fmap f m = State $ \s-> let (s',a) = runState m s in (s',f a)

instance Applicative (State s) where
pure a = State (\s->(s,a))
f <x> m = State $§ \s-> let (s',f')
(s'',a)
instance Monad (State s) where
return a = State (\s->(s,a))
m >>= k = State $§ \s -> let (s',a) = runState m s in runState (k a) s'

runState f s
runState m s' in (s'',f' a)

Marek Behalek (VSB-TUO) Advanced Functional Programming 31 /52

State Monad (4) |||||

m We can even use do syntax now.
add :: State [Int] Int
add = do x<-readInt'
y<-readInt'
return (x+y)
m Examples, how to use this state monad:

*Main> runState (readInt' >>= \a->readInt' >>= (\b->return (a+b))) [1,2,3]
(31,3

*Main> runState add [1,2,3]

([31,3)

m Finally, assuming we have RealWorld, we ca define type 10 as:
type I0 a = State RealWorld a
--getChar :: RealWorld -> (RealWorld, Char)
--main :: RealWorld -> (RealWorld, ())

Marek Behalek (VSB-TUO) Advanced Functional Programming

Monads in C#(1) |||||

= Can we implement the same ideas in C#7

m Lets start with something simple, function composition.
public static Func<A, C> After<A, B, C>(this Func<B, C> f, Func<A, B> g)
=> value => f(g(value));

public static Func<A,C> Composition<A, B, C>(Func<B, C> f, Func<A, B> g)
=> value => f(g(value));

Func<string, int> parse = int.Parse; // string -> int
Func<int, int> abs = Math.Abs; // int -> int

Func<string, int> compositionl = abs.After(parse);
Func<string, int> composition2 = Composition(abs, parse);

Marek Behalek (VSB-TUO) Advanced Functional Programming 33 /52

Monads in C#(2) |||||

® What if we want to have Maybe monad (there are various possible solutions).

public

public
public

public

public
{

abstract class Maybe<A> {}

class Just<T> : Maybe<T> { public T Value { get; init; } }
class Nothing<T> : Maybe<T> {}

static Maybe<A> Return<A>(this A value) => new Just<A> { Value = value };

static Maybe Bind<A, B>(this Maybe<A> x, Func<A, Maybe> f) => x switch

Nothing<A> => new Nothing(),
Just<A> value => f(value.Value),
_ => throw new Exception("Unexpected value.")

};

Marek Behalek (VSB-TUO) Advanced Functional Programming 34 / 52

Monads in C#(3) |||||

m Now, we can chain actions as before in Haskell.
var result2 = new Just<int>() { Value = 1 }
.Bind(x => new Just<int> { Value = x + 1 })
.Bind(x => new Just<string>() { Value = "Value: " + x });
m Even more, C# have something called query syntax.
m |t is related to LINQ, it uses a syntax similar to SQL, but it is also convenient when we
threat IEnumerable as a monad.
m It requires to define: Select, SelectMany
public Maybe SelectMany(Func<A, Maybe> f) => (Maybe)this.Bind(f);

public Maybe<C> SelectMany<B, C>(Func<A, Maybe> f, Func<A, B, C> resultSelector)
=> (Maybe<C>)this.Bind(x => f(x).Bind(y => Return(resultSelector(x, y))));

var test = from x in new Just<int> { Value
from y in new Just<int> { Value
select x + y;

1}
2}

Marek Behalek (VSB-TUO) Advanced Functional Programming

Monads in C#(4) |||||

m What about State monad, is it possible to define them in C#7
public delegate (TState State, T Value) State<TState, T>(TState state);

public static State<TState, C> SelectMany<TState, A, B, C>(

this State<TState, A> source,

Func<A, State<TState, B>> selector,

Func<A, B, C> resultSelector) =>

oldState => {

(TState State, A Value) value = source(oldState);
(TState State, B Value) result = selector(value.Value) (value.State);
return (result.State, resultSelector(value.Value, result.Value));

};

Marek Behalek (VSB-TUO) Advanced Functional Programming

Monads in C#(5) |||||

= Now, the usage in fact compose from two parts, first we are creating the function then

we are executing it with chosen state (list of numbers in our case).
(List<int>, int Max) FindMax(List<int> list) =>

(list.Where(x => x '= list.Max()).ToList(), list.Max());
(List<int>, int Min) FindMin(List<int> list) =>

(list.Where(x => x '= list.Min()).ToList(), list.Min());

State<List<int>, string> query =
from max in (State<List<int>,int>) (oldState => FindMax(oldState))
from min in (State<List<int>, int>) (FindMin)
from count in (State<List<int>, int>) (oldState => (oldState, oldState.Count))
select E"Max {max}, Min {min}, beside {count} elements.";

var (_, Value) = query(new List<int>{ 7,1,2,3,5});
m The result in Value will be:

Max 7, Min 1, beside 3 elements.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Advantages of functional style programming | |||||

m In current popular programming languages, usage of functional programming style
depends on programmer.

m Today's most popular programming languages support multiple programming paradigms.
m Functional style of programming can be easily applied in most of them.

m Moreover, we can use even some fundamental functional concepts like monads.

m And if we need mutable data or side-effect — no big deal, even Haskell have them.

m Big question that needs to be addressed is: What will be the gain, if i use functional
style of programming?

m (Personal opinion) Functional programs are often shorter and more concise — easier to
comprehend — easier to maintain.

m Recursion is simpler, though not necessarily easier to learn.
m Function signatures are more meaningful.

m Ne Fewer side effects (immutable data, pure functions)
m Easier for concurrent execution.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Advantages of functional style programming

Advantages of functional style programming Il |||||

m Much simpler testing — possible are even concepts like proving programs properties.
m More error prone — Haskell's type system captures a lot of errors — huge difference in
run-time errors.

m New features like: lazy evaluation, infinite structures,

m Guidelines to the usage of functional programming

m Like other style of programming, it does not solve all problems.

m Like in other areas, benefits should overweight the costs.

m We get mentioned benefits, even if just a part of the solution uses functional style of
programming.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Software Verification and Validation

Software Verification and Validation - what it is about? | |||||

m Software engineering is the systematic application of engineering approaches to the
development of software.
m Verification — Are we building the product right? — The process of evaluating software

to determine whether the products of a given development phase satisfy the conditions
imposed at the start of that phase.

= Validation — Are we building the right product? — The process of evaluating software
during or at the end of the development process to determine whether it satisfies specified

requirements.
m We have plenty of of strategies and methodologies to software development —
determines how and when validation and verification are conducted.
m The most common strategy how it conducted is some sort of testing
(https://en.wikipedia.org/wiki/V-Model_(software_development)).
m Probably, the most basic form of testing are unit tests.

m In the V-Model, unit tests eliminates bugs at code level or unit level (module, class,..). It
verifies that an isolated unit is working correctly.

Marek Behalek (VSB-TUO)

Advanced Functional Programming

https://en.wikipedia.org/wiki/V-Model_(software_development)

Unit Tests |||||

m Unit tests are written by a programmer [TestClass()]
that have created the unit. public class StackTests
m Most common units in OOP are classes.

m There are plenty of tool helping with unit ;ziil\:eng(;ip,resto
test. {
m Most basic toolkit usually represents Stack<int> s = new Stack<int>();
XUnit: JUnit-Java, NUnit-C#, s.Push(1);
HUnit-Haskell... Assert.AreEqual(
m Such tool is in fact a library allowing s.Pop(),
the test definition and containing some 1,

useful infrastructure. "Value in stack should be 1.");

m Units testing is integrated for example
in Visual Studio (helps with test
creation, environment to execute and
maintain tests).

}
[TestMethod ()]
public void PushTest() { }

Marek Behalek (VSB-TUO) Advanced Functional Programming

Unit Tests - difficulties |||||

= What it takes to write a good test? Was our previous example OK? — Write a good test
is not an easy task.

m Moreover, what if the tested function uses database or some device? What if we have a
complex application relaying on some third party components? — test fixtures
= How meaningful is then the function's type definition?
m If we have no side effects — all we need is to prepare the input — all changes are
encapsulated in the result
m What if the function have some side effects?
= What we really need to test?
m How do we even prepare the test? How do we prepare some state of the system?
m How do we check if the result fulfils the requirements?

Even in pure functional languages, there are side effects, but the are bounded (monads in
Haskell).

Marek Behalek (VSB-TUO) Advanced Functional Programming

Reasoning about programs |||||

m OK, functional languages have mathematical background, but is this any good for me (|
am a programmer, not mathematician;-)?

m Formal definition of language semantic allows to prove program's properties — more
trustworthy then just some tests.

m Emended systems, automotive, ...
m Tools: Formal proof management system Coq https://coq.inria.fr/ — based on
richly-typed functional programming language Gallina

m CompCert - verification of C programs
m Extract certified programs to Haskell

m Mathematical induction (informally)
m Prove for n = 0 (base case)
m On assumption that it holds for n, prove that it holds for n+1
m Principle of structural induction for lists — we want to prove property P

m Base case — prove P for [] outright.
m Prove P for (x:xs) on assumption that P holds for xs.

Marek Behalek (VSB-TUO) Advanced Functional Programming

https://coq.inria.fr/

Reasoning about programs

Reasoning about programs - Example (1) |||||

m We want to prove: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

m We start with equations from the source code.
[] ++ ys = ys !
(x:xs) ++ ys = x: (xs ++ ys) -— ++.2

= Now we can start proving (using mathematical induction).
--a) [=>xs
([1 ++ ys) ++ zs
= ys ++ zs -- ++.1

[T ++ (ys ++ zs) -- ++.1

-- b) (x:xs) => xs

((x:xs)++ys)++zs

= x: (xs++ys)++zs - ++.2
= x: ((xs++ys)++zs) -- ++.2
= x:(xs++(ys++zs)) -- assumption
= (x:xs)++(ys++zs) -- ++.2

Marek Behalek (VSB-TUO) Advanced Functional Programming 44 / 52

Reasoning about programs - Example (2) |||||

m Better example: (length (xs++ys) = length xs + length ys

m We start with equations from the source code.
length [] =0 --len.1
length (_:xs) = 1 + length xs --len.2

= Now we can start proving (using mathematical induction).
--a) [=>xs
length ([] ++ ys)
= length ys -- ++.1

0 + length ys -- + zero element

length [] + length ys -- len.1

-- b) (x:x8) => xs

length ((x:xs) ++ ys)

= length (x:(xs++ys) -— ++.2

= 1 + length (xs++ys) -- len.2

= 1 + (length xs + length ys) -- assumption)

= (1 + length xs) + length ys -- associativity of +
= length (x:xs) + length ys -- len.2

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lambda calculus | |||||

m)\ — calculus is a formal system in mathematical logic for expressing computation based
on function abstraction and application using variable binding and substitution (wiki).

m |t was invented in 1930s by Alonzo Church.

Universal model of computation, as good as Turing machine — all that can be compute
by Turing machine can be expressed in A\ — calculus — roughly, this corresponds to
problems that can be solved by a computer.

Omitting many details, theoretical background for all functional programming languages.

m Originally A — calculus is untyped — in programming we need types — not that easy to
add them.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lambda calculus

Lambda calculus - simplified definition |||||

m Syntax (how it is written) - a lambda term is:
m z,y,z... - variables, representing a parameter or mathematical/logical value.
m (\z.M) - abstraction, M is a lambda term, the variable 2 becomes bound in the expression.
m (MN) - application, applying a function to an argument. M and N are lambda terms.

m Semantics (how to compute it)

B o — conversion : (Ax.M[z]) = (Ay.M|[y]) - renaming the bound variables in the
expression. Used to avoid name collisions.

m 3 —reduction : (Ax.M)E) — (M|x := E]) -replacing the bound variables with the
argument expression in the body of the abstraction (this really moves forward the
computation).

m 1 — reduction : ((Az.fx) — f - expresses the idea of extensionality (two functions are the
same if and only if they give the same result for all arguments).

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lambda calculus

Lambda calculus - normal form |||||

m Redex - Reducible Expression - expression that can be reduced with defined rules.
m o —redex, S — redex
m Church—Rosser theorem - when applying reduction rules to terms, the ordering in which
the reductions are chosen does not make a difference to the eventual result.
m In other words, if there are two distinct reductions or sequences of reductions that can be
applied to the same term, then there exists a term that is reachable from both results.
= Normal form - expression that contains no 8 — redex.
m 42, (2, "hello"), \x -> (x + 1)

m Haskell uses weak head normal form - stops when head is a lambda abstraction or a
data constructor.

m (1 +1,2+2),\x ->2+2,'h" : ("e" ++ "11o0").

m The question that remains is, how do we get the weak head normal form?

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lazy evaluation

Lazy evaluation - what are our option for evaluation strategies? |||||

m When choosing an evaluation strategy for expressions in languages like Haskell, what are
key factors?
m Evaluation order - which reductions are performed first (inner-most, outer-most)
m How do we pass parameters to a function - by value, by name, by reference, by need...

m Function f is strict when and only when: f1 = L

m Strict evaluation - function's arguments are evaluated completely before the function is
applied.
® innermost reduction, eager evaluation or greedy evaluation
m Sometime also Call by value - it requires strict evaluation, arguments are passed as
evaluated values.
m It is used by most programming languages: Java, C#, F#, OCalm, Scheme...
m Non-strict evaluation - a function may return a result before all of its arguments are fully
evaluated.
m outer-most reduction, normal order evaluation (does not evaluate any of the arguments
until they are needed in the body of the function).

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lazy evaluation (1) |||||

Lazy evaluation - When we are lazy enough, to call our evaluation lazy?

m Sub-expressions will be evaluated only when they are needed for in evaluation.
m If they are evaluated, they are evaluated only once.

m |n pure functional languages, if we use outer-most reduction, we are doing normal order
evaluation — only needed sub-expressions are evaluated, only needed arguments are
evaluated.

m In pure functional languages, to be lazy enough, all we need is some clever way, how to
pass arguments — call by need.

m Used in Haskell, option in OCalm, Scheme, some languages simulate lazy behaviour for
some sub-systems.

m In pure functional languages, the terms lazy evaluation, call by need, or non-strict
evaluation mean the same thing.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lazy evaluation (2) |||||

m Eager evaluation
square (1+2)
square(3)

3%3
9

m Lazy evaluation
square (1+2)
let x = 1+2 in x*x
let x = 3 in x*x
3*3
9

Marek Behalek (VSB-TUO) Advanced Functional Programming 51 / 52

Advantages of Lazy evaluation |||||

m If an expression has a normal form, it will be reached by lazy evaluation strategy (theory
nonsense:-).

m It allows to use new concepts, like infinite structures or functions — new way how to
solve a problem (i still wont use it:-).
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
m It is useful when processing (large) data (LINQ, Apache Spark,..)
m Consider following example:
map (\x->x"4) (concat (map (\x->[1..x]) [1..101))

= Will be the intermediate results constructed?

m In fact, we are continually getting items from the final list!
m How the equivalent in C4++ will look like?

m We need to sacrifice code clarity, or all intermediate results will be computed before we get
some result.

Marek Behalek (VSB-TUO) Advanced Functional Programming

Lazy evaluation

Thank you for your attention

Marek Bé&halek

VSB — Technical University of Ostrava

marek.behalek@vsb.cz

December 5, 2022

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

	Application of Functional Style of Programming
	Immutable data types
	Functions with No Side Effects
	Motivation for monads
	Monads
	List Monad

	IO Monad
	State Monads
	Monads in C#

	Advantages of functional style programming
	Software Verification and Validation
	Reasoning about programs
	Lambda calculus
	Lazy evaluation

